The organic electrochemical transistor conundrum when reporting a mixed ionic–electronic transport figure of merit

[1]  M. Berggren,et al.  Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability , 2020, Advanced materials.

[2]  Alexandra F. Paterson,et al.  Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability , 2020, Nature Communications.

[3]  Raj Kishen Radha Krishnan,et al.  Finding the equilibrium of organic electrochemical transistors , 2020, Nature Communications.

[4]  G. Ghibaudo,et al.  Precise Extraction of Charge Carrier Mobility for Organic Transistors , 2019, Advanced Functional Materials.

[5]  D. Gundlach,et al.  Contact Resistance in Organic Field‐Effect Transistors: Conquering the Barrier , 2019, Advanced Functional Materials.

[6]  E. Stavrinidou,et al.  Organic mixed ionic–electronic conductors , 2019, Nature Materials.

[7]  R. McLeod,et al.  Device physics of organic electrochemical transistors , 2018, Organic Electronics.

[8]  Yang Han,et al.  Recent Progress in High‐Mobility Organic Transistors: A Reality Check , 2018, Advanced materials.

[9]  David A. Hanifi,et al.  The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes , 2018, Chemistry of materials : a publication of the American Chemical Society.

[10]  G. Malliaras,et al.  Benchmarking organic mixed conductors for transistors , 2017, Nature Communications.

[11]  G. Ghibaudo,et al.  Exploring the Charge Transport in Conjugated Polymers , 2017, Advanced materials.

[12]  S. Shaheen,et al.  Influence of disorder on transfer characteristics of organic electrochemical transistors , 2017 .

[13]  B. Lüssem,et al.  Contact Resistance Effects in Highly Doped Organic Electrochemical Transistors , 2016, Advanced materials.

[14]  Aram Amassian,et al.  Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors , 2016, Journal of the American Chemical Society.

[15]  I. McCulloch,et al.  Avoid the kinks when measuring mobility , 2016, Science.

[16]  Christopher J. Tassone,et al.  Structural control of mixed ionic and electronic transport in conducting polymers , 2016, Nature Communications.

[17]  Thomas N Jackson,et al.  Mobility overestimation due to gated contacts in organic field-effect transistors , 2016, Nature Communications.

[18]  S. Shaheen,et al.  Optical Measurements Revealing Nonuniform Hole Mobility in Organic Electrochemical Transistors , 2015 .

[19]  G. Malliaras,et al.  A physical interpretation of impedance at conducting polymer/electrolyte junctions , 2014 .

[20]  W. Xie,et al.  Organic Electrical Double Layer Transistors Based on Rubrene Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm–2 , 2011 .

[21]  R. Coehoorn,et al.  Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder , 2009 .

[22]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[23]  Hyun Ho Choi,et al.  Critical assessment of charge mobility extraction in FETs. , 2017, Nature materials.