A Modified Valley Restrained Monte Carlo Method to Efficiently Search the Low Energy Structures of Peptides

Abstract A new Monte Carlo sampling scheme, namely the Modified Valley Restrained Monte Carlo procedure, is used to obtain the global energy minimum conformations for polypeptides, such as Met-enkephalin and Melittin. For each peptide, we found close agreement with previous results from both theoretical and experimental studies. The simple idea for controlling the step size according to the Valley Function, provides useful suggestions in searching the global energy minimum structures, and furthermore helps solve the multiple minima problem.

[1]  D Eisenberg,et al.  The structure of melittin. II. Interpretation of the structure. , 1982, The Journal of biological chemistry.

[2]  Mu Shik Jhon,et al.  Use of the High Directional Monte Carlo Method to Predict the Low Energy Structures of Melittin , 1995 .

[3]  Arnold T. Hagler,et al.  Computer simulation of the conformational properties of oligopeptides. Comparison of theoretical methods and analysis of experimental results , 1979 .

[4]  J. Mccammon,et al.  Simulation methods for protein structure fluctuations , 1980, Biopolymers.

[5]  Anfinsen Cb,et al.  The formation of the tertiary structure of proteins. , 1967 .

[6]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[7]  M. Karplus,et al.  Prediction of the folding of short polypeptide segments by uniform conformational sampling , 1987, Biopolymers.

[8]  Seung Do Hong,et al.  Taboo-based Monte Carlo Search as a Method to Improve Sampling Efficiency , 1999 .

[9]  H A Scheraga,et al.  Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. II. average backbone structure of enkephalin , 1986, Biopolymers.

[10]  Jae Kwang Shin,et al.  High directional Monte Carlo procedure coupled with the temperature heating and annealing as a method to obtain the global energy minimum structure of polypeptides and proteins , 1991, Biopolymers.

[11]  Seung Do Hong,et al.  Restricted random search method based on taboo search in the multiple minima problem , 1997 .

[12]  Mu Shik Jhon,et al.  Valley Restrained Monte Carlo Procedure as a Method to Improve Sampling Efficiency , 1999 .

[13]  M. Rao,et al.  On the force bias Monte Carlo simulation of simple liquids , 1979 .

[14]  D Eisenberg,et al.  Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry. , 1980, The Journal of biological chemistry.

[15]  J. D. Doll,et al.  Extending J walking to quantum systems: Applications to atomic clusters , 1992 .

[16]  S. Premilat,et al.  Statistical molecular models for angiotensin II and enkephalin related to NMR coupling constants , 1980 .

[17]  Mu Shik Jhon,et al.  Acceleration of convergence rates by high directional Monte Carlo sampling procedure , 1992 .

[18]  H. Scheraga,et al.  Application of the diffusion equation method for global optimization to oligopeptides , 1992 .

[19]  C B Anfinsen,et al.  The formation of the tertiary structure of proteins. , 1967, Harvey lectures.

[20]  Arnold T. Hagler,et al.  COMPUTER SIMULATION OF THE CONFORMATIONAL PROPERTIES OF OLIGOPEPTIDES. COMPARISON OF THEORETICAL METHODS AND ANALYSIS OF EXPERIMENTAL RESULTS , 1979 .

[21]  Jooyoung Lee,et al.  New optimization method for conformational energy calculations on polypeptides: Conformational space annealing , 1997, J. Comput. Chem..

[22]  A. Mathiowetz,et al.  De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology , 1995, Protein Science.

[23]  S Kubota,et al.  Conformation and aggregation of melittin: Effect of pH and concentration of sodium dodecyl sulfate , 1986, Biopolymers.

[24]  Systematic stepsize variation: Efficient method for searching conformational space of polypeptides , 1998 .

[25]  H. Scheraga,et al.  Prediction of the native conformation of a polypeptide by a statistical‐mechanical procedure. I. Backbone structure of enkephalin , 1985, Biopolymers.

[26]  F. Jähnig,et al.  The structure of melittin in membranes. , 1986, Biophysical journal.

[27]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[28]  Thomas,et al.  The Structure of Melittin 11 . INTERPRETATION OF THE STRUCTURE , 2001 .

[29]  H. Scheraga,et al.  On the multiple‐minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method—tests on poly(L‐alanine) , 1988, Biopolymers.

[30]  Mu Shik Jhon,et al.  Determination of C‐terminal structure of human CHaras oncogenic protein , 1995, J. Comput. Chem..

[31]  D. Eisenberg,et al.  The structure of melittin. I. Structure determination and partial refinement. , 1981, The Journal of biological chemistry.

[32]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[33]  Bernd Mayer,et al.  Systematic stepsize variation: Efficient method for searching conformational space of polypeptides , 1998, J. Comput. Chem..