Mushroom-shaped geometry of contact elements in biological adhesive systems

It is well known that geometry of contact element is an extremely important factor affecting adhesion. Comparing various biological adhesive systems, we find that mushroom-shaped geometry of contact elements is widely spread in nature. Based on experimental data obtained with an artificial model system implementing a mushroom-shaped geometry of contact element, we discuss the principles responsible for particularly strong adhesion in this type of contact. Finally, we draw a general relationship between functional types of different biological adhesive systems and geometry of contact elements.

[1]  Delphine Gourdon,et al.  Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3 , 2007, Proceedings of the National Academy of Sciences.

[2]  Stanislav N. Gorb,et al.  Effect of real contact geometry on adhesion , 2006 .

[3]  M. Scherge,et al.  Biological micro- and nanotribology , 2001 .

[4]  Nigel E. Stork,et al.  A comparison of the adhesive setae on the feet of lizards and arthropods , 1983 .

[5]  Stanislav N. Gorb,et al.  The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Ralph Spolenak,et al.  Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy , 2005, Biology Letters.

[7]  A. Crosby,et al.  Controlling polymer adhesion with "pancakes". , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Stanislav N. Gorb,et al.  The effect of surface roughness on the adhesion of elastic plates with application to biological systems , 2003 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Bernhard Schröder,et al.  Klebtechnik: Klebstoffe, Anwendungen und Verfahren , 2005 .

[12]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[13]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[14]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[15]  Y. Pelletier,et al.  Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces , 1987 .

[16]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[17]  S. Gorb,et al.  Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.

[18]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion , 2004, Journal of The Royal Society Interface.

[19]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[20]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[21]  Stanislav Gorb,et al.  Adhesion of echinoderm tube feet to rough surfaces , 2005, Journal of Experimental Biology.

[22]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[23]  Stanislav Gorb,et al.  Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) , 2001, Journal of Comparative Physiology A.

[24]  R. Foelix,et al.  The biology of spiders. , 1987 .

[25]  Maureen E. Callow,et al.  The Ulva Spore Adhesive System , 2006 .

[26]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[27]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[28]  Professor Dr. Werner Nachtigall Biological Mechanisms of Attachment , 1974, Springer Berlin Heidelberg.

[29]  Jay X. Tang,et al.  Adhesion of single bacterial cells in the micronewton range. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Huajian Gao,et al.  Effects of contact shape on the scaling of biological attachments , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  F. Barth,et al.  A new mechanosensory organ on the anterior spinnerets of the spiderCupiennius salei (Araneae, Ctenidae) , 1996, Zoomorphology.

[32]  Stanislav N. Gorb,et al.  Friction and adhesion in the tarsal and metatarsal scopulae of spiders , 2006, Journal of Comparative Physiology A.

[33]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[34]  C. Dickinson Marine biodeterioration: Advanced techniques applicable to the Indian Ocean , 1990 .

[35]  S. Gorb,et al.  Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force , 2007, Journal of The Royal Society Interface.

[36]  J. Waite,et al.  ADHESION IN BYSSALLY ATTACHED BIVALVES , 1983 .

[37]  U. Hiller Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien , 1968, Zeitschrift für Morphologie der Tiere.

[38]  A. Chiovitti,et al.  Diatom Adhesives: Molecular and Mechanical Properties , 2006 .

[39]  S. Gorb,et al.  WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA , 2004 .