Ferroelastic domain structure and phase transition in single-crystalline [PbZn1/3Nb2/3O3]1-x[PbTiO3]x observed via in situ x-ray microbeam

[1]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[2]  X. Long,et al.  High‐Performance Ferroelectric Solid Solution Crystals: Pb(In1/2Nb1/2)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3 , 2014 .

[3]  Wenwu Cao,et al.  Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. , 2014, Progress in materials science.

[4]  Fei Li,et al.  Achieving single domain relaxor-PT crystals by high temperature poling , 2014 .

[5]  Dragan Damjanovic Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  D. Viehland,et al.  Direct high-resolution transmission electron microscopy observation of tetragonal nanotwins within the monoclinic MC phase of Pb(Mg1∕3Nb2∕3)O3-0.35PbTiO3 crystals , 2008 .

[7]  E. Kisi,et al.  The phase transition sequence in the relaxor ferroelectric PZN–8% PT , 2008 .

[8]  Yu U. Wang Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic M{sub A} and M{sub B} phases , 2007 .

[9]  Yu U. Wang Diffraction theory of nanotwin superlattices with low symmetry phase , 2006 .

[10]  Z. Ye,et al.  Hierarchical micro-/nanoscale domain structure in Mc phase of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal , 2006 .

[11]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[12]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[13]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[14]  T. Shimura,et al.  New Photorefractive Material: Relaxor Ferroelectric Crystal Pb(Zn 1/3 Nb 2/3 )O 3 -PbTiO 3 , 2002, CLEO 2002.

[15]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[16]  Howard A. Padmore,et al.  Submicron X-ray diffraction and its applications to problems in materials and environmental science. , 2002 .

[17]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2002 .

[18]  G. Shirane,et al.  Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 , 2001, cond-mat/0108264.

[19]  G. Shirane,et al.  Phase diagram of the relaxor ferroelectric Ñ1¿xÖPbÑZn 1'3 Nb 2'3 ÖO 3 -xPbTiO 3 , 2002 .

[20]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[21]  G. Shirane,et al.  Universal phase diagram for high-piezoelectric perovskite systems , 2001, cond-mat/0102457.

[22]  G. Shirane,et al.  Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn(1/3)Nb(2/3)O3-8% PbTiO3. , 2000, Physical review letters.

[23]  Dwight D. Viehland,et al.  Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals , 2000 .

[24]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[25]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[26]  Kenji Uchino,et al.  Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system , 1981 .