Evaluating and forecasting movement patterns of magnetically driven microbeads in complex geometries

[1]  Metin Sitti,et al.  Multifarious Transit Gates for Programmable Delivery of Bio-functionalized Matters. , 2019, Small.

[2]  E. Lage,et al.  A Trisymmetric Magnetic Microchip Surface for Free and Two‐Way Directional Movement of Magnetic Microbeads , 2018, Advanced Materials Interfaces.

[3]  CheolGi Kim,et al.  Magnetically Characterized Molecular Lubrication between Biofunctionalized Surfaces. , 2018, ACS applied materials & interfaces.

[4]  J. McCord,et al.  Magnetomechanics of superparamagnetic beads on a magnetic merry-go-round: from micromagnetics to radial looping , 2017 .

[5]  CheolGi Kim,et al.  Nano/micro-scale magnetophoretic devices for biomedical applications , 2017 .

[6]  A. Straube,et al.  Bidirectional particle transport and size selective sorting of Brownian particles in a flashing spatially periodic energy landscape. , 2016, Physical chemistry chemical physics : PCCP.

[7]  S. Rampini,et al.  Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing. , 2016, Lab on a chip.

[8]  CheolGi Kim,et al.  An on-chip micromagnet frictionometer based on magnetically driven colloids for nano-bio interfaces. , 2016, Lab on a chip.

[9]  A. Chilkoti,et al.  Magnetophoretic Conductors and Diodes in a 3D Magnetic Field , 2016, Advanced functional materials.

[10]  Iris Koch,et al.  Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications , 2015, Sensors.

[11]  Chen-Yu Huang,et al.  Concentric Magnetic Structures for Magnetophoretic Bead Collection, Cell Trapping and Analysis of Cell Morphological Changes Caused by Local Magnetic Forces , 2015, PloS one.

[12]  Stefan Burgard,et al.  Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation. , 2015, ACS nano.

[13]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[14]  CheolGi Kim,et al.  Magnetophoretic circuits for digital control of single particles and cells , 2014, Nature Communications.

[15]  Paolo Vavassori,et al.  Two‐Dimensional Programmable Manipulation of Magnetic Nanoparticles on‐Chip , 2014, Advanced materials.

[16]  D. Montana,et al.  Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls. , 2012, Lab on a chip.

[17]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[18]  Mikkel Fougt Hansen,et al.  Microstripes for transport and separation of magnetic particles. , 2012, Biomicrofluidics.

[19]  Alla Albrecht,et al.  Asymmetric Magnetization Reversal of Stripe‐Patterned Exchange Bias Layer Systems for Controlled Magnetic Particle Transport , 2011, Advanced materials.

[20]  L. Virgin,et al.  Transport of superparamagnetic beads through a two-dimensional potential energy landscape. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  V. Poghosyan,et al.  Numerical study of the correspondence between the dissipative and fixed-energy Abelian sandpile models. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Ratnasingham Sooryakumar,et al.  Patterned magnetic traps for magnetophoretic assembly and actuation of microrotor pumps , 2011 .

[23]  R. Sooryakumar,et al.  Manipulation of magnetically labeled and unlabeled cells with mobile magnetic traps. , 2010, Biophysical journal.

[24]  G. Zabow,et al.  Controlled transport of magnetic particles using soft magnetic patterns , 2008 .

[25]  Michael G. Roper,et al.  Transport and separation of biomolecular cargo on paramagnetic colloidal particles in a magnetic ratchet. , 2008, The journal of physical chemistry. B.

[26]  Hui S Son,et al.  Traveling wave magnetophoresis for high resolution chip based separations. , 2007, Lab on a chip.

[27]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[28]  N. Pamme,et al.  Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. , 2006, Lab on a chip.

[29]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[30]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[31]  Maciej Zborowski,et al.  Magnetic cell separation: characterization of magnetophoretic mobility. , 2003, Analytical chemistry.

[32]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[33]  G. Friedman,et al.  Printing superparamagnetic colloidal particle arrays on patterned magnetic film , 2003 .

[34]  E. Quandt,et al.  Optimization of the /spl Delta/E-effect in thin films and multilayers by magnetic field annealing , 2002 .

[35]  S. Quake,et al.  Microfluidic Large-Scale Integration , 2002, Science.

[36]  K. O’Grady Biomedical applications of magnetic nanoparticles , 2002 .

[37]  Eckhard Quandt,et al.  Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing , 2002 .

[38]  I. Safarik,et al.  Use of magnetic techniques for the isolation of cells. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[39]  M. Donahue,et al.  Head To Head Domain Wall Structures In Thin Magnetic Stripes , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[40]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[41]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine : Biomedical applications of magnetic nanoparticles , 2003 .

[42]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[43]  C. Kvam,et al.  Application of Magnetic Beads in Bioassays , 1993, Bio/Technology.

[44]  B. M. Fabuss,et al.  Viscosity of liquid water from 25 to 150.degree. measurements in pressurized glass capillary viscometer , 1968 .

[45]  C. W. Oseen,et al.  Neuere Methoden und Ergebnisse in der Hydrodynamik , 1927 .