Complementary Surrounds Explain Diverse Contextual Phenomena Across Visual Modalities

Context is known to affect how a stimulus is perceived. A variety of illusions have been attributed to contextual processing—from orientation tilt effects to chromatic induction phenomena, but their neural underpinnings remain poorly understood. Here, we present a recurrent network model of classical and extraclassical receptive fields that is constrained by the anatomy and physiology of the visual cortex. A key feature of the model is the postulated existence of near- versus far- extraclassical regions with complementary facilitatory and suppressive contributions to the classical receptive field. The model accounts for a variety of contextual illusions, reveals commonalities between seemingly disparate phenomena, and helps organize them into a novel taxonomy. It explains how center-surround interactions may shift from attraction to repulsion in tilt effects, and from contrast to assimilation in induction phenomena. The model further explains enhanced perceptual shifts generated by a class of patterned background stimuli that activate the two opponent extraclassical regions cooperatively. Overall, the ability of the model to account for the variety and complexity of contextual illusions provides computational evidence for a novel canonical circuit that is shared across visual modalities.

[1]  D. Fitzpatrick,et al.  Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns , 1995, Neuron.

[2]  H. Wilson,et al.  Motion Integration over Space: Interaction of the Center and Surround Motion* * This research was first reported at the Annual Meeting of the Association for Research in Vision and Ophthalmology, May 1994 and 1995. , 1997, Vision Research.

[3]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[4]  E. Seidemann,et al.  Supplemental Data Complex Dynamics of V 1 Population Responses Explained by a Simple Gain-Control Model , 2009 .

[5]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[6]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[7]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[8]  Mia Setic,et al.  Modeling the top-down influences on the lateral interactions in the visual cortex , 2008, Brain Research.

[9]  R. F Hess,et al.  Contour integration and cortical processing , 2003, Journal of Physiology-Paris.

[10]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[11]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[12]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[13]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[14]  D. Eagleman Visual illusions and neurobiology , 2001, Nature Reviews Neuroscience.

[15]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[16]  Michael H. Herzog,et al.  Why vision is not both hierarchical and feedforward , 2014, Front. Comput. Neurosci..

[17]  G. Westheimer,et al.  Depth attraction and repulsion of disparate foveal stimuli , 1987, Vision Research.

[18]  Matteo Carandini,et al.  Two Distinct Mechanisms of Suppression in Human Vision , 2005, The Journal of Neuroscience.

[19]  S. Solomon,et al.  Centre-surround effects on perceived orientation in complex images , 2008, Vision Research.

[20]  S. Shevell,et al.  Large shifts in color appearance from patterned chromatic backgrounds , 2003, Nature Neuroscience.

[21]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[22]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[23]  M. White,et al.  A New Effect of Pattern on Perceived Lightness , 1979, Perception.

[24]  J. B. Levitt,et al.  Comparison of Spatial Summation Properties of Neurons in Macaque V1 and V2 , 2009, Journal of neurophysiology.

[25]  S. Shimojo,et al.  Assimilation-type and Contrast-type Bias of Motion Induced by the Surround in a Random-dot Display: Evidence for Center-Surround Antagonism , 1996, Vision Research.

[26]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[27]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[28]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[29]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[30]  Stuart Anstis,et al.  White’s Effect in Lightness, Color, and Motion , 2005 .

[31]  Thomas Serre,et al.  A New Biologically Inspired Color Image Descriptor , 2012, ECCV.

[32]  Peter Dayan,et al.  Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics , 2012, PLoS Comput. Biol..

[33]  Peter Wenderoth,et al.  The tilt illusion: Repulsion and attraction effects in the oblique meridian , 1977, Vision Research.

[34]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[35]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[36]  J. Mollon,et al.  A neural basis for unique hues? , 2009, Current Biology.

[37]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[38]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.

[39]  Thomas Wachtler,et al.  "Tilt" in color space: Hue changes induced by chromatic surrounds. , 2015, Journal of vision.

[40]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[41]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[42]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.

[43]  Christopher J. Rozell,et al.  Visual Nonclassical Receptive Field Effects Emerge from Sparse Coding in a Dynamical System , 2013, PLoS Comput. Biol..

[44]  F. Sengpiel,et al.  Binocular rivalry: Ambiguities resolved , 1997, Current Biology.

[45]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[46]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[47]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[48]  M White,et al.  The Effect of the Nature of the Surround on the Perceived Lightness of Grey Bars within Square-Wave Test Gratings , 1981, Perception.

[49]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[50]  Stefan Treue,et al.  Attention Reshapes Center-Surround Receptive Field Structure in Macaque Cortical Area MT , 2009, Cerebral cortex.

[51]  Alessandra Angelucci,et al.  Beyond the Classical Receptive Field : Surround Modulation in Primary Visual Cortex , 2022 .

[52]  Phil Q. Jin,et al.  The role of spatial frequency in color induction , 2001, Vision Research.

[53]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[54]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[55]  I. Ohzawa,et al.  Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. , 2009, Journal of neurophysiology.

[56]  R. Andersen,et al.  Center–Surround Antagonism Based on Disparity in Primate Area MT , 1998, The Journal of Neuroscience.

[57]  R. Born,et al.  Input-Gain Control Produces Feature-Specific Surround Suppression , 2015, The Journal of Neuroscience.

[58]  Daniel B. Rubin,et al.  The Stabilized Supralinear Network: A Unifying Circuit Motif Underlying Multi-Input Integration in Sensory Cortex , 2015, Neuron.

[59]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[60]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[61]  Michael C. Avery,et al.  Optogenetic Activation of Normalization in Alert Macaque Visual Cortex , 2015, Neuron.

[62]  Alessandra Angelucci,et al.  Strong Recurrent Networks Compute the Orientation Tuning of Surround Modulation in the Primate Primary Visual Cortex , 2012, The Journal of Neuroscience.

[63]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[64]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[66]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[67]  B. Dow,et al.  Orientation and color columns in monkey visual cortex. , 2002, Cerebral cortex.

[68]  Farran Briggs,et al.  Distinct Mechanisms for Size Tuning in Primate Visual Cortex , 2011, The Journal of Neuroscience.

[69]  R. Sekuler,et al.  Mutual repulsion between moving visual targets. , 1979, Science.

[70]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[71]  Colin W G Clifford,et al.  The tilt illusion: Phenomenology and functional implications , 2014, Vision Research.

[72]  Bevil R. Conway,et al.  Color Vision, Cones, and Color-Coding in the Cortex , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[73]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[74]  S. Shevell,et al.  Color shifts from S-cone patterned backgrounds: contrast sensitivity and spatial frequency selectivity , 2005, Vision Research.

[75]  G. Westheimer Spatial interaction in the domain of disparity signals in human stereoscopic vision. , 1986, The Journal of physiology.

[76]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[77]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[78]  Martin Vinck,et al.  Gamma-Band Synchronization and Information Transmission , 2013 .

[79]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[80]  C. Blakemore,et al.  Characteristics of surround inhibition in cat area 17 , 1997, Experimental Brain Research.

[81]  S. Shimojo,et al.  Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes , 1993, Vision Research.

[82]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[83]  C Y Li,et al.  Shift in speed selectivity of visual cortical neurons: a neural basis of perceived motion contrast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.