The case for dynamical dark energy revisited

We investigate the behaviour of dark energy using the recently released supernova data of Riess et al 2004 and a model independent parametrization for dark energy (DE). We find that, if no priors are imposed on Ω0m and h, DE which evolves with time provides a better fit to the SNe data than ΛCDM. This is also true if we include results from the WMAP CMB data. From a joint analysis of SNe + CMB, the best fit DE model has w0  −1 at the present epoch and the transition from deceleration to acceleration occurs at zT = 0.39 ± 0.03. However, DE evolution becomes weaker if the ΛCDM based CMB results Ω0m = 0.27 ± 0.04, h = 0.71 ± 0.06 are incorporated in the analysis. In this case, zT = 0.57 ± 0.07. Our results also show that the extent of DE evolution is sensitive to the manner in which the supernova data is sampled.

[1]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[2]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[3]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[4]  P. Allen,et al.  The dispersion in the Cepheid period–luminosity relation and the consequences for the extragalactic distance scale , 2004 .

[5]  Varun Sahni,et al.  The case for dynamical dark energy revisited , 2004 .

[6]  Michael C. Liu,et al.  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[7]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[8]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[9]  R. Maoli,et al.  Triple Experiment Spectrum of the Sunyaev-Zel'dovich Effect in the Coma Cluster: H0 , 2003, astro-ph/0303587.

[10]  Observatories of the Carnegie Institution of Washington,et al.  New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy , 2003, astro-ph/0303378.

[11]  A. Starobinsky,et al.  Exploring the expanding Universe and dark energy using the statefinder diagnostic , 2003, astro-ph/0303009.

[12]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[13]  S. Carroll,et al.  Can the dark energy equation - of - state parameter w be less than -1? , 2003, astro-ph/0301273.

[14]  A. Melchiorri,et al.  The state of the dark energy equation of state , 2002, astro-ph/0211522.

[15]  B. Bassett,et al.  Model-independent dark energy differentiation with the integrated Sachs-Wolfe effect. , 2002, Physical review letters.

[16]  L. Guzzo,et al.  The REFLEX galaxy cluster survey - VII. Omega(m) and sigma(8) from cluster abundance and large-scale clustering , 2002, astro-ph/0208251.

[17]  A. Starobinsky,et al.  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[18]  R. CaldwellR,et al.  ファントムエネルギー: w<-1の暗黒エネルギーは宇宙最後の日を招く , 2003 .

[19]  M. Kunz,et al.  A late-time transition in the cosmic dark energy? , 2002, astro-ph/0203383.

[20]  V. Sahni,et al.  Braneworld models of dark energy , 2002, astro-ph/0202346.

[21]  V. Sahni The cosmological constant problem and quintessence , 2002, astro-ph/0202076.

[22]  B. McInnes The dS/CFT Correspondence and the Big Smash , 2001, hep-th/0112066.

[23]  A. Melchiorri,et al.  Current constraints on the dark energy equation of state , 2001, astro-ph/0110472.

[24]  C. Deffayet,et al.  Accelerated universe from gravity leaking to extra dimensions , 2001, astro-ph/0105068.

[25]  J. Mohr,et al.  Determining the Cosmic Distance Scale from Interferometric Measurements of the Sunyaev-Zeldovich Effect , 2002, astro-ph/0205350.

[26]  C. Wetterich,et al.  Quintessence and the Separation of Cosmic Microwave Background Peaks , 2001 .

[27]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[28]  C. Wetterich,et al.  The Influence of Quintessence on the Separation of CMB Peaks , 2001, astro-ph/0105306.

[29]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[30]  V. Pasquier,et al.  An Alternative to quintessence , 2001, gr-qc/0103004.

[31]  S. Myers,et al.  The hubble constant from sze measurements in low-redshift clusters , 2001, astro-ph/0101170.

[32]  James R. Wilson,et al.  Gamma-Ray Bursts via the Neutrino Emission from Heated Neutron Stars , 2000, astro-ph/0002312.

[33]  C. Wetterich,et al.  Quintessence and the Separation of Cosmic Microwave Background Peaks , 2000, astro-ph/0012139.

[34]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[35]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[36]  A. Starobinsky,et al.  Reconstruction of a scalar-tensor theory of gravity in an accelerating universe , 2000, Physical review letters.

[37]  A. Starobinsky,et al.  Reconstructing the cosmic equation of state from supernova distances. , 1999, Physical review letters.

[38]  R. R. Caldwell,et al.  A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state , 1999, astro-ph/9908168.

[39]  Yun Wang,et al.  Flux-averaging Analysis of Type Ia Supernova Data , 1999, astro-ph/9907405.

[40]  D. Huterer,et al.  Prospects for probing the dark energy via supernova distance measurements , 1998, astro-ph/9808133.

[41]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[42]  T. Chiba,et al.  Determining the equation of state of the expanding Universe: inverse problem in cosmology , 1998, astro-ph/9810447.

[43]  A. Starobinsky,et al.  How to determine an effective potential for a variable cosmological term , 1998, astro-ph/9810431.

[44]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[45]  A. Sandage,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. VIII. SN 1990N in NGC 4639 , 2001 .

[46]  M. White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996, astro-ph/9602019.