Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces

Thin-film solar cells contain nano-textured interfaces that scatter the incident light, leading to increased absorption and hence increased current densities in the solar cell. In this manuscript we systematically study optimized random nano-textured morphologies for three different cases: amorphous hydrogenated silicon solar cells (a-Si:H, bandgap 1.7 eV), nano-crystalline silicon solar cells (nc-Si:H, bandgap 1.1 eV) and tandem solar cells consisting of an a-Si:H and a nc-Si:H junction. For the optimization we use the Perlin texture algorithm, the scalar scattering theory, and a semi-coherent optical device simulator.

[1]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[2]  M. Zeman,et al.  A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells , 2012 .

[3]  Miro Zeman,et al.  Optical model for multilayer structures with coherent, partly coherent and incoherent layers. , 2013, Optics express.

[4]  M. Zeman,et al.  Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. , 2012, Nano letters.

[5]  Miro Zeman,et al.  Designing optimized nano textures for thin-film silicon solar cells. , 2013, Optics express.

[6]  Ken Perlin Better acting in computer games: the use of procedural methods , 2002, Comput. Graph..

[7]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[8]  J. W. Metselaar,et al.  Computer modelling of current matching in a-Si : H/a-Si : H tandem solar cells on textured TCO substrates , 1997 .

[9]  T. Söderström,et al.  Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post‐oxidation , 2010 .

[10]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[11]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[12]  Miro Zeman,et al.  Accurate opto-electrical modeling of multi-crystalline silicon wafer-based solar cells , 2012 .

[13]  C. Battaglia,et al.  Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells , 2011 .

[14]  M. Zeman,et al.  Modelling of thin-film silicon solar cells , 2013 .

[15]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[16]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[17]  M. Zeman,et al.  In situ manipulation of the sub gap states in hydrogenated amorphous silicon monitored by advanced application of Fourier transform photocurrent spectroscopy , 2014 .

[18]  C. Battaglia,et al.  Modeling of light scattering from micro- and nanotextured surfaces , 2010 .