Testing contractibility in planar rips complexes

The (Vietoris-)Rips complex of a discrete point-set <i>P</i> is an abstract simplicial complex in which a subset of <i>P</i> defines a simplex if and only if the diameter of that subset is at most 1. We describe an efficient algorithm to determine whether a given cycle in a planar Rips complex is contractible. Our algorithm requires <i>O</i>(<i>m</i> log <i>n</i>) time to preprocess a set of <i>n</i> points in the plane in which <i>m</i> pairs have distance at most 1; after preprocessing, deciding whether a cycle of <i>k</i> Rips edges is contractible requires <i>O</i>(<i>k</i>) time. We also describe an algorithm to compute the shortest non-contractible cycle in a planar Rips complex in <i>O</i>(<i>n</i><sup>2</sup>log <i>n</i> + <i>mn</i>) time.

[1]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[2]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[3]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[4]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[5]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1994, SCG '94.

[6]  Francis Lazarus,et al.  Optimal pants decompositions and shortest homotopic cycles on an orientable surface , 2003, JACM.

[7]  Sergei N. Bespamyatnikh Computing homotopic shortest paths in the plane , 2003, SODA '03.

[8]  J. Latschev Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .

[9]  Erin W. Chambers,et al.  Rips Complexes of Planar Point Sets , 2007, 0712.0395.

[10]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2002, Comput. Geom..

[11]  de VerdièreÉric Colin,et al.  Tightening Nonsimple Paths and Cycles on Surfaces , 2010 .

[12]  Abubakr Muhammad,et al.  Asymptotic Stability of Switched Higher Order Laplacians , 2007, HSCC.

[13]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[14]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[15]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[16]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[18]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[19]  Edward Fredkin,et al.  Trie memory , 1960, Commun. ACM.

[20]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA '06.

[21]  A. O. Houcine On hyperbolic groups , 2006 .

[22]  Sergey Bereg Encoding Homotopy of Paths in the Plane , 2004, LATIN.

[23]  Dima Grigoriev,et al.  Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane , 1998, ISSAC '98.

[24]  Jack Snoeyink,et al.  Testing Homotopy for Paths in the Plane , 2002, SCG '02.

[25]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[26]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[27]  Thomas Ottmann,et al.  Data Structures and Efficient Algorithms, Final Report on the DFG Special Joint Initiative , 1992, Data Structures and Efficient Algorithm.

[28]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[29]  Tamal K. Dey,et al.  Transforming Curves on Surfaces , 1999, J. Comput. Syst. Sci..

[30]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[31]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[32]  Bojan Mohar,et al.  Finding Shortest Non-Separating and Non-Contractible Cycles for Topologically Embedded Graphs , 2007, Discret. Comput. Geom..

[33]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[34]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[35]  Erin W. Chambers,et al.  Multiple source shortest paths in a genus g graph , 2007, SODA '07.

[36]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[37]  Erik D. Demaine,et al.  Approximation algorithms via contraction decomposition , 2007, SODA '07.

[38]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[39]  J. Hausmann On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .

[40]  Sergey Bereg,et al.  Computing homotopic shortest paths in the plane , 2003, SODA.

[41]  Emo Welzl,et al.  On Spanning Trees with Low Crossing Numbers , 1992, Data Structures and Efficient Algorithms.

[42]  Afra J. Zomorodian,et al.  Topology for Computing (Cambridge Monographs on Applied and Computational Mathematics) , 2005 .

[43]  R. Ho Algebraic Topology , 2022 .

[44]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[45]  Carsten Thomassen,et al.  Embeddings of graphs with no short noncontractible cycles , 1990, J. Comb. Theory, Ser. B.

[46]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA 2006.

[47]  A. Markov,et al.  Insolubility of the Problem of Homeomorphy ∗ , 2001 .

[48]  Bruce A. Reed,et al.  Computing crossing number in linear time , 2007, STOC '07.

[49]  Stephen G. Kobourov,et al.  Drawing with Fat Edges , 2006, Int. J. Found. Comput. Sci..

[50]  Jirí Matousek,et al.  Spanning trees with low crossing number , 1991, RAIRO Theor. Informatics Appl..

[51]  Abubakr Muhammad,et al.  Dynamic Coverage Verification in Mobile Sensor Networks Via Switched Higher Order Laplacians , 2007, Robotics: Science and Systems.

[52]  Erin W. Chambers,et al.  Splitting (complicated) surfaces is hard , 2006, SCG '06.

[53]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[54]  Abubakr Muhammad,et al.  Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[55]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[56]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation (Cambridge Monographs on Applied and Computational Mathematics) , 2006 .

[57]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[58]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[59]  Erik Carlsson,et al.  c ○ World Scientific Publishing Company AN ALGEBRAIC TOPOLOGICAL METHOD FOR FEATURE IDENTIFICATION , 2022 .