On Convergence of Flat Multivariate Interpolation by Translation Kernels with Finite Smoothness

In this paper, we provide an alternate approach to the analysis of the limit of flat radial basis interpolation, thereby improving and expanding on the current understanding of this interesting problem.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Charles A. Micchelli,et al.  Asymptotically optimal approximation in fractional Sobolev spaces and the numerical solution of differential equations , 1974 .

[3]  Nira Dyn,et al.  Analysis of Univariate Nonstationary Subdivision Schemes with Application to Gaussian-Based Interpolatory Schemes , 2007, SIAM J. Math. Anal..

[4]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[5]  Gang Joon Yoon,et al.  Convergence of Increasingly Flat Radial Basis Interpolants to Polynomial Interpolants , 2007, SIAM J. Math. Anal..

[6]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[7]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[8]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[9]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[10]  B. Fornberg,et al.  Radial basis functions: Developments and applications to planetary scale flows , 2011 .

[11]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[12]  Fred J. Hickernell,et al.  Multivariate interpolation with increasingly flat radial basis functions of finite smoothness , 2012, Adv. Comput. Math..

[13]  Giulio Casciola,et al.  Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants , 2006, Comput. Math. Appl..

[14]  C. D. Boor,et al.  On multivariate polynomial interpolation , 1990 .

[15]  C. A. Micchelli,et al.  Optimal Difference Schemes for Linear Initial Value Problems , 1973 .

[16]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[17]  John Paul Ward,et al.  Lp error estimates for approximation by Sobolev splines and Wendland functions on ℝd , 2011, Adv. Comput. Math..

[18]  Bengt Fornberg,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .

[19]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[20]  Giulio Casciola,et al.  Edge-driven Image Interpolation using Adaptive Anisotropic Radial Basis Functions , 2010, Journal of Mathematical Imaging and Vision.

[21]  Charles A. Micchelli,et al.  On collocation matrices for interpolation and approximation , 2013, J. Approx. Theory.

[22]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..