Robustness of topological order in the toric code with open boundaries

We analyze the robustness of topological order in the toric code in an open boundary setting in the presence of perturbations. The boundary conditions are introduced on a cylinder, and are classified into condensing and non-condensing classes depending on the behavior of the excitations at the boundary under perturbation. For the non-condensing class, we see that the topological order is more robust when compared to the case of periodic boundary conditions while in the condensing case topological order is lost as soon as the perturbation is turned on. In most cases, the robustness can be understood by the quantum phase diagram of a equivalent Ising model.

[1]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[2]  A. Läuchli,et al.  Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories. , 2016, Physical review letters.

[3]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[4]  M. Troyer,et al.  Breakdown of a topological phase: quantum phase transition in a loop gas model with tension. , 2006, Physical review letters.

[5]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[6]  Yidun Wan,et al.  Entanglement entropy of topological orders with boundaries , 2018, Journal of High Energy Physics.

[7]  Tetsufumi Tanamoto,et al.  Dynamic generation of topologically protected self-correcting quantum memory , 2013, 1302.3998.

[8]  Michael J. Hartmann,et al.  Superconducting quantum simulator for topological order and the toric code , 2016, 1608.04565.

[9]  Yidun Wan,et al.  Generalized ADE classification of topological boundaries and anyon condensation , 2015 .

[10]  C. Castelnovo,et al.  Quantum topological phase transition at the microscopic level , 2007, 0707.2084.

[11]  Beni Yoshida,et al.  Gapped boundaries, group cohomology and fault-tolerant logical gates , 2015, 1509.03626.

[12]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[13]  Hans Peter Büchler,et al.  Digital quantum simulation with Rydberg atoms , 2011, Quantum Inf. Process..

[14]  Liang Kong,et al.  Models for Gapped Boundaries and Domain Walls , 2011, 1104.5047.

[15]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[16]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[17]  H. Weimer Quantum simulation of many-body spin interactions with ultracold polar molecules , 2013, 1301.1342.

[18]  Youjin Deng,et al.  Phase diagram of the toric code model in a parallel magnetic field , 2012, 1201.6409.

[19]  X. Wen,et al.  Boundary degeneracy of topological order , 2012, 1212.4863.

[20]  Meng Cheng,et al.  Universal Quantum Computation with Gapped Boundaries. , 2017, Physical review letters.

[21]  Guifre Vidal,et al.  Entanglement renormalization and gauge symmetry , 2010, 1007.4145.

[22]  K. Mølmer,et al.  Topological matter with collective encoding and Rydberg blockade , 2010, 1006.5664.

[23]  Salman Beigi,et al.  The Quantum Double Model with Boundary: Condensations and Symmetries , 2010, 1006.5479.

[24]  Wen,et al.  Vacuum degeneracy of chiral spin states in compactified space. , 1989, Physical review. B, Condensed matter.

[25]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[26]  J. Cardy Scaling and Renormalization in Statistical Physics by John Cardy , 1996 .

[27]  F. Pollmann,et al.  Numerical study of a transition between Z 2 topologically ordered phases , 2014, 1403.0768.

[28]  Kai Phillip Schmidt,et al.  Robustness of a perturbed topological phase. , 2010, Physical review letters.

[29]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[30]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[31]  S. Dusuel,et al.  Low-energy effective theory of the toric code model in a parallel magnetic field , 2008, 0807.0487.

[32]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[33]  M H Freedman,et al.  P/NP, and the quantum field computer , 1998, Proc. Natl. Acad. Sci. USA.

[34]  Yi Zhang,et al.  Quasiparticle statistics and braiding from ground state entanglement , 2011, 1111.2342.

[35]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[36]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[37]  D. Lidar,et al.  Adiabatic preparation of topological order. , 2006, Physical review letters.

[38]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[39]  X. Wen Topological Orders in Rigid States * , 2022 .

[40]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[41]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.