Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo.

[1]  A. Michael,et al.  Tonic autoinhibition contributes to the heterogeneity of evoked dopamine release in the rat striatum , 2009, Journal of neurochemistry.

[2]  Pavel Takmakov,et al.  Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. , 2009, Analytical chemistry.

[3]  R. Wightman,et al.  Synaptic Overflow of Dopamine in the Nucleus Accumbens Arises from Neuronal Activity in the Ventral Tegmental Area , 2009, The Journal of Neuroscience.

[4]  B. J. Venton,et al.  Fast-scan cyclic voltammetry for the detection of tyramine and octopamine , 2009, Analytical and bioanalytical chemistry.

[5]  R. Wightman,et al.  Microelectrodes for studying neurobiology. , 2008, Current opinion in chemical biology.

[6]  R. Wightman,et al.  Preferential Enhancement of Dopamine Transmission within the Nucleus Accumbens Shell by Cocaine Is Attributable to a Direct Increase in Phasic Dopamine Release Events , 2008, The Journal of Neuroscience.

[7]  R. Wightman,et al.  Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation , 2008, Proceedings of the National Academy of Sciences.

[8]  Bo Zhang,et al.  Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays. , 2008, Analytical chemistry.

[9]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[10]  R. Wightman,et al.  Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens , 2007, The European journal of neuroscience.

[11]  P. Garris,et al.  Paradoxical modulation of short‐term facilitation of dopamine release by dopamine autoreceptors , 2007, Journal of neurochemistry.

[12]  B. J. Venton,et al.  Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. , 2007, Analytical chemistry.

[13]  R. Wightman,et al.  Pharmacologically induced, subsecond dopamine transients in the caudate–putamen of the anesthetized rat , 2007, Synapse.

[14]  R. Wightman Probing Cellular Chemistry in Biological Systems with Microelectrodes , 2006, Science.

[15]  R. Wightman,et al.  Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. , 2006, Langmuir.

[16]  R. Wightman,et al.  Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Cragg,et al.  DAncing past the DAT at a DA synapse , 2004, Trends in Neurosciences.

[18]  P. Garris,et al.  Real‐time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing , 2004, Journal of neurochemistry.

[19]  Garret D Stuber,et al.  Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. , 2003, The Analyst.

[20]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[21]  R. Wightman,et al.  Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate–putamen , 2003, Journal of neurochemistry.

[22]  A. Michael,et al.  Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry , 2002, Journal of Neuroscience Methods.

[23]  R. Wightman,et al.  Temporal Separation of Vesicle Release from Vesicle Fusion during Exocytosis* , 2002, The Journal of Biological Chemistry.

[24]  F Ivy Carroll,et al.  Concurrent Autoreceptor-Mediated Control of Dopamine Release and Uptake during Neurotransmission: An In Vivo Voltammetric Study , 2002, The Journal of Neuroscience.

[25]  Mark R. Anderson,et al.  Dopamine Adsorption at Surface Modified Carbon-Fiber Electrodes , 2001 .

[26]  P. Garris,et al.  Preferential Increases in Nucleus Accumbens Dopamine after Systemic Cocaine Administration Are Caused by Unique Characteristics of Dopamine Neurotransmission , 2000, The Journal of Neuroscience.

[27]  W. Schultz Multiple reward signals in the brain , 2000, Nature Reviews Neuroscience.

[28]  R. Wightman,et al.  Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. , 2000, Analytical chemistry.

[29]  Miguel A. L. Nicolelis,et al.  Methods for Neural Ensemble Recordings , 1998 .

[30]  R. Mark Wightman,et al.  Peer Reviewed: Color Images for Fast-Scan CV Measurements in Biological Systems , 1998 .

[31]  R. Wightman,et al.  Color images for fast-scan CV measurements in biological systems. , 1998, Analytical chemistry.

[32]  R. Gainetdinov,et al.  Cocaine self-administration in dopamine-transporter knockout mice , 1998, Nature Neuroscience.

[33]  A. Świergiel,et al.  A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica , 1997, Journal of Neuroscience Methods.

[34]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[35]  P. Garris,et al.  Real‐Time Measurement of Electrically Evoked Extracellular Dopamine in the Striatum of Freely Moving Rats , 1997, Journal of neurochemistry.

[36]  P. Garris,et al.  Comparison of Dopamine Uptake in the Basolateral Amygdaloid Nucleus, Caudate‐Putamen, and Nucleus Accumbens of the Rat , 1995, Journal of neurochemistry.

[37]  R. Wightman,et al.  Fast-scan cyclic voltammetry of 5-hydroxytryptamine. , 1995, Analytical chemistry.

[38]  R. M. Wightman,et al.  Rapid and Selective Cyclic Voltammetric Measurements of Epinephrine and Norepinephrine as a Method To Measure Secretion from Single Bovine Adrenal Medullary Cells , 1994 .

[39]  P. Garris,et al.  In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus. , 1994, The Journal of physiology.

[40]  P. Garris,et al.  Heterogeneity of evoked dopamine overflow wihin the striatal and striatoamygdaloid regions , 1994, Neuroscience.

[41]  R. Wightman,et al.  Principles of voltammetry and microelectrode surface states , 1993, Journal of Neuroscience Methods.

[42]  S Kitayama,et al.  Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Wightman,et al.  Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake , 1990, Brain Research Reviews.

[44]  Stanley J. Watson,et al.  The rat brain in stereotaxic coordinates (2nd edn) by George Paxinos and Charles Watson, Academic Press, 1986. £40.00/$80.00 (264 pages) ISBN 012 547 6213 , 1987, Trends in Neurosciences.

[45]  Y. Agid,et al.  Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease , 1983, Brain Research.

[46]  R. Wightman,et al.  Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. , 1983, Science.

[47]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[48]  R. Wightman,et al.  Spatio-temporal resolution of exocytosis from individual cells. , 1998, Annual review of biophysics and biomolecular structure.

[49]  Zimmerman Jb,et al.  Simultaneous electrochemical measurements of oxygen and dopamine in vivo. , 1991 .

[50]  R. Wightman,et al.  Simultaneous electrochemical measurements of oxygen and dopamine in vivo. , 1991, Analytical chemistry.

[51]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .