A formalization and classification of global illumination methods

Abstract This report presents a classification of global illumination methods, focusing on the numerical algorithms used. The methods are grouped in several categories, and described by using a common theoretical formalism, which indicates the similarities and differences between them. This formalism is based on the notion of integral and projection operators, and Markov Chains. The Global Illumination problem and its solutions are presented based on these mathematical devices. A key element in this presentation is the inclusion of the notion of an observer as a projection operator which yields a finite representation of an image from the radiance function.

[1]  James Arvo,et al.  Particle transport and image synthesis , 1990, SIGGRAPH.

[2]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[3]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[4]  Yves D. Willems,et al.  A Theoretical Framework for Physically Based Rendering , 1994, Comput. Graph. Forum.

[5]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[6]  Sudhir P. Mudur,et al.  Computation of global illumination by Monte Carlo simulation of the particle model of light , 1992 .

[7]  Mateu Sbert,et al.  An Integral Geometry Based Method for Fast Form‐Factor Computation , 1993, Comput. Graph. Forum.

[8]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[9]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1998 .

[10]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[11]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[12]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[13]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[14]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .

[15]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[16]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[17]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[18]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[19]  Michael F. Cohen,et al.  A Radiosity Solution for Complex Environments , 1997 .

[20]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[21]  Michael Cohen,et al.  Radiosity and relaxation methods: progressive refinement is southwell relaxation , 1993 .

[22]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[23]  Philipp Ziegler,et al.  Wavelet radiosity in computer graphics , 1998 .

[24]  Sumanta N. Pattanaik,et al.  Efficient potential equation solutions for global illumination computation , 1993, Comput. Graph..

[25]  Philipp Slusallek,et al.  Radiosity and relaxation methods , 1994, IEEE Computer Graphics and Applications.

[26]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[27]  John R. Wallace,et al.  A Ray tracing algorithm for progressive radiosity , 1989, SIGGRAPH '89.

[28]  Yizhou Yu,et al.  Multiresolution B‐spline Radiosity , 1995, Comput. Graph. Forum.

[29]  Donald S. Fussell,et al.  Illumination networks: fast realistic rendering with general reflectance functions , 1989, SIGGRAPH '89.

[30]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[31]  Pat Hanrahan,et al.  Importance and Discrete Three Point Transport , 1993 .

[32]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[33]  Yves D. Willems,et al.  Importance-driven Monte Carlo Light Tracing , 1995 .

[34]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[35]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[36]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[37]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Kadi Bouatouch,et al.  Haar Wavelet: A Solution to Global Illumination With General Surface Properties , 1995 .

[39]  Paul S. Wang,et al.  Distribution Ray Tracing: Theory and Practice , 1992 .

[40]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[41]  Daniel R. Baum,et al.  Improving radiosity solutions through the use of analytically determined form-factors , 1989, SIGGRAPH.

[42]  Qunsheng Peng,et al.  A new radiosity approach by procedural refinements for realistic image sythesis , 1988, SIGGRAPH.

[43]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[44]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[45]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.