2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas

ABSTRACT 2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species—Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei—using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways.

[1]  J. B. Jones,et al.  Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. , 1981, The Journal of biological chemistry.

[2]  A. Polson,et al.  Particle size distribution of African horsesickness virus. , 1954, Biochimica et biophysica acta.

[3]  A. Zeng,et al.  Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol , 2008, Applied Microbiology and Biotechnology.

[4]  Henry Naveau,et al.  Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide , 1994, Archives of Microbiology.

[5]  H. Wood,et al.  Life with CO or CO2 and H2 as a source of carbon and energy , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  W. Whitman,et al.  Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. , 1995, Biochimica et biophysica acta.

[7]  E. C. Clausen,et al.  Biological production of ethanol from coal synthesis gas , 1993 .

[8]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[9]  V. Müller,et al.  Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase , 2010, Proceedings of the National Academy of Sciences.

[10]  J. van der Oost,et al.  d-2,3-Butanediol Production Due to Heterologous Expression of an Acetoin Reductase in Clostridium acetobutylicum , 2011, Applied and Environmental Microbiology.

[11]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[12]  J. Chu,et al.  Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. , 2010, Bioresource technology.

[13]  Volker Müller,et al.  Discovery of a Ferredoxin:NAD+‐Oxidoreductase (Rnf) in Acetobacterium woodii , 2008, Annals of the New York Academy of Sciences.

[14]  Y. Tani Microbial Production of ATP , 1989 .

[15]  G. T. Tsao,et al.  Production of optically active 2,3‐butanediol by Bacillus polymyxa , 1988, Biotechnology and bioengineering.

[16]  E. Papoutsakis,et al.  Metabolite stress and tolerance in the production of biofuels and chemicals: Gene‐expression‐based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum , 2010, Biotechnology and bioengineering.

[17]  Lin Tan,et al.  The RNA polymerase factory: a robotic in vitro assembly platform for high-throughput production of recombinant protein complexes , 2007, Nucleic acids research.

[18]  Murray Moo-Young,et al.  Comprehensive biotechnology : the principles, applications, and regulations of biotechnology in industry, agriculture, and medicine , 1987 .

[19]  P. Ouyang,et al.  Microbial 2,3-butanediol production: a state-of-the-art review. , 2011, Biotechnology advances.

[20]  Christian J. A. Sigrist,et al.  Nucleic Acids Research Advance Access published November 14, 2007 The 20 years of PROSITE , 2007 .

[21]  R. E. Hungate Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes , 1969 .

[22]  S. Ragsdale Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.

[23]  W. Nicholson The Bacillus subtilis ydjL (bdhA) Gene Encodes Acetoin Reductase/2,3-Butanediol Dehydrogenase , 2008, Applied and Environmental Microbiology.

[24]  Peter Dürre,et al.  Biochemical production of biobutanol. , 2011 .

[25]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[26]  P. Dürre,et al.  Clostridium ljungdahlii represents a microbial production platform based on syngas , 2010, Proceedings of the National Academy of Sciences.

[27]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[28]  S. Simpson,et al.  Fermentative production of ethanol from carbon monoxide. , 2011, Current opinion in biotechnology.

[29]  A. Zeng,et al.  Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae , 1998, Applied Microbiology and Biotechnology.

[30]  A. Zeng,et al.  Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate , 1994 .

[31]  S. Ui,et al.  Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4 , 1998 .

[32]  R. Tanner,et al.  Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. , 2005, International journal of systematic and evolutionary microbiology.

[33]  R. Tanner,et al.  Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.

[34]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[35]  G. Horgan,et al.  Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR , 2002 .

[36]  M. Syu Biological production of 2,3-butanediol , 2001, Applied Microbiology and Biotechnology.

[37]  A. Stams,et al.  Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization , 2006, Critical reviews in biotechnology.

[38]  Jeroen Hugenholtz,et al.  Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. , 1992, Applied Microbiology and Biotechnology.

[39]  Peter Dürre,et al.  Handbook on Clostridia , 2005 .

[40]  M. Penttilä,et al.  Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes , 1993, Journal of bacteriology.

[41]  Hans P. Blaschek,et al.  Effect of Butanol Challenge and Temperature on Lipid Composition and Membrane Fluidity of Butanol-Tolerant Clostridium acetobutylicum , 1987, Applied and environmental microbiology.

[42]  P. Xu,et al.  Acetoin Metabolism in Bacteria , 2007, Critical reviews in microbiology.

[43]  F. Tabita,et al.  Rubredoxin from the Green Sulfur Bacterium Chlorobium tepidum Functions as an Electron Acceptor for Pyruvate Ferredoxin Oxidoreductase* , 1999, The Journal of Biological Chemistry.

[44]  T. Henkin,et al.  The T box mechanism: tRNA as a regulatory molecule , 2010, FEBS letters.

[45]  W. Grajek,et al.  Biotechnological production of 2,3-butanediol--current state and prospects. , 2009, Biotechnology advances.

[46]  Z. Liu,et al.  An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure. , 2001, BioFactors.

[47]  V. Müller,et al.  Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes , 2011, Cellular and Molecular Life Sciences.

[48]  R. E. Hungate,et al.  The Roll-Tube Method for Cultivation of Strict Anaerobes , 1972 .

[49]  P. Dürre,et al.  Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum , 1989, Archives of Microbiology.

[50]  N. Najimudin,et al.  Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin , 1993, Journal of bacteriology.

[51]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[52]  I. Maddox Microbial Production of 2,3‐Butanediol , 2001 .

[53]  S. Ragsdale,et al.  The Role of Pyruvate Ferredoxin Oxidoreductase in Pyruvate Synthesis during Autotrophic Growth by the Wood-Ljungdahl Pathway* , 2000, The Journal of Biological Chemistry.

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.