DEDTI versus IEDTI: efficient and predictive models of drug-target interactions

[1]  S. Gharaghani,et al.  DRaW: prediction of COVID-19 antivirals by deep learning—an objection on using matrix factorization , 2023, BMC Bioinformatics.

[2]  Zhonglu Ren,et al.  SSELM-neg: spherical search-based extreme learning machine for drug–target interaction prediction , 2023, BMC Bioinformatics.

[3]  Daniel G. Kyrollos,et al.  Reciprocal perspective as a super learner improves drug-target interaction prediction (MUSDTI) , 2022, Scientific Reports.

[4]  K. Walder,et al.  Repurposing Drugs via Network Analysis: Opportunities for Psychiatric Disorders , 2022, Pharmaceutics.

[5]  Hyunju Lee,et al.  HIDTI: integration of heterogeneous information to predict drug-target interactions , 2022, Scientific Reports.

[6]  Joanna Matalińska,et al.  Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics , 2022, International journal of molecular sciences.

[7]  D. Sundar,et al.  TransDTI: Transformer-Based Language Models for Estimating DTIs and Building a Drug Recommendation Workflow , 2022, ACS omega.

[8]  Wen-long Huang,et al.  Source and exploration of the peptides used to construct peptide-drug conjugates. , 2021, European journal of medicinal chemistry.

[9]  Marie-Pier Scott-Boyer,et al.  Integration strategies of multi-omics data for machine learning analysis , 2021, Computational and structural biotechnology journal.

[10]  Hao Lv,et al.  IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction , 2021, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Chloé-Agathe Azencott,et al.  Drug Target Identification with Machine Learning: How to Choose Negative Examples , 2021, International journal of molecular sciences.

[12]  Mohammad Ali Zare Chahooki,et al.  AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders , 2021, BMC Bioinformatics.

[13]  S. Gharaghani,et al.  AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders , 2021, BMC Bioinform..

[14]  W. Winuthayanon,et al.  Prostaglandin-endoperoxide synthase 2 (PTGS2) in the oviduct: roles in fertilization and early embryo development. , 2021, Endocrinology.

[15]  Lijun Cai,et al.  Indicator Regularized Non-Negative Matrix Factorization Method-Based Drug Repurposing for COVID-19 , 2021, Frontiers in Immunology.

[16]  Rinkle Rani,et al.  A Systematic Review of Applications of Machine Learning in Cancer Prediction and Diagnosis , 2021, Archives of Computational Methods in Engineering.

[17]  Benjamin A. Shoemaker,et al.  PubChem in 2021: new data content and improved web interfaces , 2020, Nucleic Acids Res..

[18]  Gaurav Srivastav,et al.  Movie Recommendation System using Cosine Similarity and KNN , 2020, International Journal of Engineering and Advanced Technology.

[19]  Ping Xuan,et al.  Prediction of Drug–Target Interactions Based on Network Representation Learning and Ensemble Learning , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  Jimeng Sun,et al.  MolTrans: Molecular Interaction Transformer for drug–target interaction prediction , 2020, Bioinform..

[21]  Dongqing Wei,et al.  A comparative chemogenic analysis for predicting Drug-Target Pair via Machine Learning Approaches , 2020, Scientific Reports.

[22]  M. Hung,et al.  ADORA1 Inhibition Promotes Tumor Immune Evasion by Regulating the ATF3-PD-L1 Axis. , 2020, Cancer cell.

[23]  Benoit Playe,et al.  Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity , 2020, Journal of Cheminformatics.

[24]  Angshul Majumdar,et al.  Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization , 2020, PloS one.

[25]  D. Chicco,et al.  The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation , 2020, BMC Genomics.

[26]  David T. Jones,et al.  Improved protein structure prediction using potentials from deep learning , 2020, Nature.

[27]  Hiroshi Mamitsuka,et al.  Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches , 2019, Briefings Bioinform..

[28]  Chee-Keong Kwoh,et al.  Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey , 2019, Briefings Bioinform..

[29]  Xiaofeng Zhang,et al.  Concepts and Techniques , 2019, Cognition and Intractability.

[30]  L. Boscá,et al.  Post-translational modifications of prostaglandin-endoperoxide synthase 2 in colorectal cancer: An update , 2018, World journal of gastroenterology.

[31]  Tao Jiang,et al.  NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions , 2018, bioRxiv.

[32]  Jian Peng,et al.  A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information , 2017, Nature Communications.

[33]  Yoshihiro Yamanishi,et al.  Benchmarking a Wide Range of Chemical Descriptors for Drug‐Target Interaction Prediction Using a Chemogenomic Approach , 2014, Molecular informatics.

[34]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[35]  M. Iman,et al.  Docking Studies of Phthalimide Pharmacophore as a Sodium Channel Blocker , 2013, Iranian journal of basic medical sciences.

[36]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2013 , 2012, Nucleic Acids Res..

[37]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[38]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[39]  B. Hocher,et al.  Adenosine A1 receptor antagonists in clinical research and development. , 2010, Kidney international.

[40]  B. Fredholm,et al.  Adenosine receptors as drug targets. , 2010, Experimental cell research.

[41]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[42]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[43]  Edward E Knaus,et al.  Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. , 2008, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[44]  Jean-Philippe Vert,et al.  Protein-ligand interaction prediction: an improved chemogenomics approach , 2008, Bioinform..

[45]  Yoshihiro Yamanishi,et al.  Prediction of drug–target interaction networks from the integration of chemical and genomic spaces , 2008, ISMB.

[46]  J. Jankovic,et al.  Tetrabenazine in the treatment of hyperkinetic movement disorders , 2006, Expert review of neurotherapeutics.

[47]  Soe-Tsyr Yuan,et al.  Ontology-Based Structured Cosine Similarity in Speech Document Summarization , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[48]  M. Murcko,et al.  Chemogenomic approaches to drug discovery. , 2001, Current opinion in chemical biology.

[49]  Zhiyong Lu,et al.  A survey of current trends in computational drug repositioning , 2016, Briefings Bioinform..

[50]  Natalie Wilson Human Protein Reference Database , 2004, Nature Reviews Genetics.

[51]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[52]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[53]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[54]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[55]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[56]  D. Yorke,et al.  An Empirical Survey , 1995 .

[57]  K. Johnson An Update. , 1984, Journal of food protection.

[58]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .