Microstructural characterization of aging precipitation behavior of 17Cr-0.86Si-1.2Cu-0.5Nb ferritic stainless steel

[1]  Liming Yu,et al.  Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel , 2020 .

[2]  B. Murty,et al.  A combined electron microscopy, atom probe tomography and small angle X-ray scattering study of oxide dispersion strengthened 18Cr ferritic steel , 2020, Materials Characterization.

[3]  Huijun Li,et al.  Effects of alloying elements on microstructure and mechanical properties of Co–Ni–Al–Ti superalloy , 2020 .

[4]  R. Misra,et al.  Laves phase precipitation behavior and high-temperature strength of W-containing ferritic stainless steels , 2020 .

[5]  M. Enomoto,et al.  First-principles study on the equilibrium shape of nanometer-sized body-centered cubic Cu precipitates in ferritic steels , 2020 .

[6]  Yucheng Wu,et al.  Texture and anisotropic mechanical properties of ferritic stainless steel stabilized with Ti and Nb , 2020 .

[7]  Liu Chenxi,et al.  Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe , 2019 .

[8]  Yi Luo,et al.  Microstructural evolution, precipitation and mechanical properties of hot rolled 27Cr-4Mo-2Ni ferritic steel during 800 °C aging , 2018, Materials & Design.

[9]  Yi Luo,et al.  Microstructural evolution and mechanical properties of 27Cr-4Mo-2Ni ferritic stainless steel during isothermal aging , 2018, Materials Science and Engineering: A.

[10]  R. Misra,et al.  High temperature oxidation behavior of ferritic stainless steel containing W and Ce , 2018, Corrosion Science.

[11]  J. Kömi,et al.  Factors controlling ambient and high temperature yield strength of ferritic stainless steel susceptible to intermetallic phase formation , 2018 .

[12]  Yukinori Yamamoto,et al.  Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys , 2018 .

[13]  Z. Y. Li,et al.  Evolution of crystal structure of Cu precipitates in a low carbon steel , 2017 .

[14]  Ze Zhang,et al.  Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test , 2017 .

[15]  T. Gu,et al.  Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel , 2016 .

[16]  T. Tsuchiyama,et al.  Plastic deformation and dissolution of ε-Cu particles by cold rolling in an over-aged particle dispersion strengthening Fe-2mass%Cu alloy , 2016 .

[17]  Jian Sun,et al.  Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures , 2015, Acta Metallurgica Sinica (English Letters).

[18]  C. Liu,et al.  Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles , 2015 .

[19]  L. Singheiser,et al.  Characterization of Laves phase in Crofer 22 H stainless steel. , 2015, Micron.

[20]  Jian Sun,et al.  Coarsening and Hardening Behaviors of Cu-Rich Precipitates in Super304H Austenitic Steel , 2015, Metallurgical and Materials Transactions A.

[21]  M. Murayama,et al.  Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel , 2015, Metallurgical and Materials Transactions A.

[22]  Michael K Miller,et al.  High-strength steels hardened mainly by nanoscale NiAl precipitates , 2014 .

[23]  Huijun Li,et al.  Precipitation and impact toughness of Nb–V stabilised 18Cr–2Mo ferritic stainless steel during isothermal aging , 2014 .

[24]  H. Xing,et al.  Tensile yield behavior and precipitation strengthening mechanism in Super304H steel , 2014 .

[25]  Xishan Xie,et al.  Coherent precipitation of copper in Super304H austenite steel , 2013 .

[26]  Yoon-Uk Heo,et al.  Phase transformation of Cu precipitates from bcc to fcc in Fe–3Si–2Cu alloy , 2013 .

[27]  L. P. Karjalainen,et al.  Influence of precipitation on initial high-temperature oxidation of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy , 2012 .

[28]  Chih-Kuang Lin,et al.  Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect , 2012 .

[29]  L. P. Karjalainen,et al.  Precipitation of Si and its Influence on Mechanical Properties of Type 441 Stainless Steel , 2011 .

[30]  Xiaoqiang Hu,et al.  Mechanisms of Solidification Structure Improvement of Ultra Pure 17 wt% Cr Ferritic Stainless Steel by Ti, Nb Addition , 2011 .

[31]  K. Sato,et al.  Sub‐nanometre elemental analysis of Cu cluster in Fe–Cu–Ni alloy using aberration corrected STEM‐EDS , 2011, Journal of microscopy.

[32]  David N. Seidman,et al.  Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel , 2011 .

[33]  Y. Kato,et al.  Effect of Si on Precipitation Behavior of Nb-Laves Phase and Amount of Nb in Solid Solution at Elevated Temperature in High Purity 17%Cr-0.5%Nb Steels , 2010 .

[34]  Fu-hui Wang,et al.  The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels , 2010 .

[35]  P. Jablonski,et al.  Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application , 2010 .

[36]  Hiroshi Tanaka,et al.  Effect of Si on Mechanical Property of Galvannealed Dual Phase Steel , 2010 .

[37]  A. F. Padilha,et al.  Chi-phase precipitation in a duplex stainless steel , 2009 .

[38]  H. Bi,et al.  Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging , 2009 .

[39]  D. Seidman,et al.  The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel , 2008 .

[40]  L. Singheiser,et al.  Development of high strength ferritic steel for interconnect application in SOFCs , 2008 .

[41]  M. Herbst,et al.  Oxidation of AISI 304 and AISI 439 stainless steels , 2007 .

[42]  Kyung Sub Lee,et al.  Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels , 2005 .

[43]  D. G. Morris,et al.  The high-temperature strength of some Fe3Al alloys , 2004 .

[44]  H. Bhadeshia,et al.  Precipitation sequence in niobium-alloyed ferritic stainless steel , 2004 .

[45]  Nobuhiro Fujita,et al.  Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels , 2003 .

[46]  John Hald,et al.  Precipitate Stability in Creep Resistant Ferritic Steels-Experimental Investigations and Modelling , 2003 .

[47]  Z. Guo,et al.  Microstructural evolution in a PH13-8 stainless steel after ageing , 2003 .

[48]  K. Takao,et al.  Effect of Nb on the Proof Strength of Ferritic Stainless Steels at Elevated Temperatures , 2002 .

[49]  R. Monzen,et al.  Ostwald ripening of spherical Fe particles in Cu-Fe alloys , 2002 .

[50]  HuipingRen,et al.  Precipitation behavior of B2—like particles in Fe—Cu binary alloy , 2002 .

[51]  M. Kikuchi,et al.  Effect of Nb on high-temperature properties for ferritic stainless steel , 1996 .

[52]  G. Smith,et al.  High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .

[53]  G. Wood,et al.  The identification of thin healing layers at the base of oxide scales on FeCr base alloys , 1969 .