Mechanism of Force Generation of a Viral DNA Packaging Motor

A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the single-molecule level, the mechanism of force generation in this motor. We determine the kinetic parameters of the packaging motor and their dependence on external load to show that DNA translocation does not occur during ATP binding but is likely triggered by phosphate release. We also show that the motor subunits act in a coordinated, successive fashion with high processivity. Finally, we propose a minimal mechanochemical cycle of this DNA-translocating ATPase that rationalizes all of our findings.

[1]  P. Guo,et al.  A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. , 1987, Science.

[2]  William M. Gelbart,et al.  Osmotic pressure inhibition of DNA ejection from phage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Oster,et al.  Reverse engineering a protein: the mechanochemistry of ATP synthase. , 2000, Biochimica et biophysica acta.

[4]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[5]  V. González-Huici,et al.  The push–pull mechanism of bacteriophage Ø29 DNA injection , 2004, Molecular microbiology.

[6]  A. E. Kriss [Structure of bacteriophage]. , 1953, Uspekhi sovremennoi biologii.

[7]  S. Grimes,et al.  Bacteriophage φ29 DNA packaging , 2002 .

[8]  Omar A Saleh,et al.  Fast, DNA‐sequence independent translocation by FtsK in a single‐molecule experiment , 2004, The EMBO journal.

[9]  F. Heslot,et al.  Single-molecule study of RuvAB-mediated Holliday-junction migration. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[11]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Peixuan Guo,et al.  Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. , 1987, Journal of molecular biology.

[13]  F. Herčík [Structure of the bacteriophage]. , 1951, Casopis lekaru ceskych.

[14]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[15]  H. Gutfreund,et al.  Enzyme kinetics , 1975, Nature.

[16]  S. Grimes,et al.  RNA dependence of the bacteriophage φ29 DNA packaging ATPase , 1990 .

[17]  Marc C. Morais,et al.  Structure of the bacteriophage f29 DNA packaging motor , 2002 .

[18]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[19]  F. Major,et al.  Function of hexameric RNA in packaging of bacteriophage phi 29 DNA in vitro. , 1998, Molecular cell.

[20]  M. Bjornsti,et al.  Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA protein gp3 , 1983, Journal of virology.

[21]  C. Chen,et al.  Sequential action of six virus-encoded DNA-packaging RNAs during phage phi29 genomic DNA translocation , 1997, Journal of virology.

[22]  Jeff Gore,et al.  Sequence-Directed DNA Translocation by Purified FtsK , 2005, Science.

[23]  S. Grimes,et al.  The bacteriophage phi29 packaging proteins supercoil the DNA ends. , 1997, Journal of molecular biology.

[24]  C. Zhang,et al.  Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. , 1998, Molecular cell.

[25]  C. Zhang,et al.  Complete inhibition of virion assembly in vivo with mutant procapsid RNA essential for phage phi 29 DNA packaging , 1996, Journal of virology.

[26]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[27]  P. A. Lanzetta,et al.  An improved assay for nanomole amounts of inorganic phosphate. , 1979, Analytical biochemistry.

[28]  Dwight L. Anderson,et al.  Cryoelectron-microscopy image reconstruction of symmetry mismatches in bacteriophage phi29. , 2001, Journal of structural biology.

[29]  José L Carrascosa,et al.  Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle. , 2002, Journal of molecular biology.

[30]  E. Mancini,et al.  Atomic Snapshots of an RNA Packaging Motor Reveal Conformational Changes Linking ATP Hydrolysis to RNA Translocation , 2004, Cell.

[31]  Eugene V Koonin,et al.  Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. , 2004, Nucleic acids research.

[32]  Peixuan Guo,et al.  Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA. , 2003, Virology.

[33]  C. Bustamante,et al.  The mechanochemistry of molecular motors. , 2000, Biophysical journal.