ω-rational Languages: High Complexity Classes vs. Borel Hierarchy
暂无分享,去创建一个
[1] Ludwig Staiger,et al. Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..
[2] Grzegorz Rozenberg,et al. Developments in Language Theory II , 2002 .
[3] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[4] Ludwig Staiger,et al. Ω-languages , 1997 .
[5] Enrico Formenti,et al. Acceptance conditions for omega-languages and the Borel hierarchy , 2013, ArXiv.
[6] J. R. Büchi. Symposium on Decision Problems: On a Decision Method in Restricted Second Order Arithmetic , 1966 .
[7] David E. Muller,et al. Infinite sequences and finite machines , 1963, SWCT.
[8] Ludwig Staiger,et al. Finite Acceptance of Infinite Words , 1997, Theor. Comput. Sci..
[9] Lawrence H. Landweber,et al. Decision problems forω-automata , 1969, Mathematical systems theory.
[10] Tetsuo Moriya,et al. Accepting Conditions for Automata on omega-Languages , 1988, Theor. Comput. Sci..
[11] Enrico Formenti,et al. Acceptance Conditions for ω-Languages , 2012, Developments in Language Theory.
[12] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[13] J. Hartmanis. Sets of Numbers Defined by Finite Automata , 1967 .