Ill‐conditioning in the virtual element method: Stabilizations and bases
暂无分享,去创建一个
[1] Stefano Berrone,et al. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .
[2] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[3] Franco Dassi,et al. High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..
[4] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[5] Francesca Rapetti,et al. Spectral element methods on triangles and quadrilaterals: comparisons and applications , 2004 .
[6] P. Houston,et al. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .
[7] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[8] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[9] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[10] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[11] L. Beirao da Veiga,et al. Serendipity Nodal VEM spaces , 2015, 1510.08477.
[12] L. Evans,et al. Partial Differential Equations , 1941 .
[13] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[14] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[15] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[16] Stefano Giani,et al. Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.
[17] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[18] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[19] Lorenzo Mascotto,et al. The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.
[20] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[21] Ivonne Sgura,et al. Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.
[22] Giuseppe Vacca,et al. Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..
[23] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[24] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[25] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[26] Lourenco Beirao da Veiga,et al. Stability Analysis for the Virtual Element Method , 2016, 1607.05988.
[27] Lorenzo Mascotto,et al. Exponential convergence of the hp Virtual Element Method with corner singularities , 2016, 1611.10165.
[28] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[29] L. Mascotto,et al. Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..
[30] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[31] P. Tesini,et al. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..
[32] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[33] Junping Wang,et al. A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..
[34] P. F. Antonietti,et al. A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.
[35] Joseph E. Flaherty,et al. Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .
[36] Silvia Bertoluzza,et al. BDDC and FETI-DP for the virtual element method , 2017, 1708.03599.
[37] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[38] Lorenzo Mascotto,et al. Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.
[39] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[40] Gianmarco Manzini,et al. The Mimetic Finite Difference Method for Elliptic Problems , 2014 .
[41] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[42] Alexandre Ern,et al. Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .
[43] Sergej Rjasanow,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .
[44] Stefano Berrone,et al. A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .