Ill‐conditioning in the virtual element method: Stabilizations and bases

In this paper we investigate the behavior of the condition number of the stiffness matrix resulting from the approximation of a 2D Poisson problem by means of the Virtual Element Method. It turns out that ill-conditioning appears when considering high-order methods or in presence of "bad-shaped" (for instance nonuniformly star-shaped, with small edges...) sequences of polygons. We show that in order to improve such condition number one can modify the definition of the internal moments by choosing proper polynomial functions that are not the standard monomials. We also give numerical evidence that, at least for a 2D problem, standard choices for the stabilization give similar results in terms of condition number.

[1]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .

[2]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[3]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[4]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[5]  Francesca Rapetti,et al.  Spectral element methods on triangles and quadrilaterals: comparisons and applications , 2004 .

[6]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[7]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[8]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[9]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[10]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[11]  L. Beirao da Veiga,et al.  Serendipity Nodal VEM spaces , 2015, 1510.08477.

[12]  L. Evans,et al.  Partial Differential Equations , 1941 .

[13]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[14]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[15]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[16]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[17]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[18]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[19]  Lorenzo Mascotto,et al.  The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[22]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[23]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[24]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[27]  Lorenzo Mascotto,et al.  Exponential convergence of the hp Virtual Element Method with corner singularities , 2016, 1611.10165.

[28]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[29]  L. Mascotto,et al.  Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..

[30]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[31]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[32]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[33]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[34]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[35]  Joseph E. Flaherty,et al.  Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .

[36]  Silvia Bertoluzza,et al.  BDDC and FETI-DP for the virtual element method , 2017, 1708.03599.

[37]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[38]  Lorenzo Mascotto,et al.  Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.

[39]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[40]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[41]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[42]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[43]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .

[44]  Stefano Berrone,et al.  A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .