Lithiophilic Interface Layer Induced Uniform Deposition for Dendrite-free Lithium Metal Anodes in a 3D Polyethersulfone Frame.

Lithium metal anodes possess ultrahigh theoretical specific capacity for next-generation lithium metal batteries, but the infinite volume expansion and the growth of lithium dendrites remain a huge obstacle to their commercialization. Therefore, here, we construct a CuO-loaded 3D polyethersulfone (PES) nanofiber frame onto a lithiophilic Cu2O/Cu substrate to promote the lithium storage performance of the composite anode, and the 3D frame can effectively alleviate the volume expansion of lithium (Li) metal anodes. Meanwhile, lithium reacts with CuO in the composite nanofiber and Cu2O of the substrate to generate Li2O, which can strengthen the solid electrolyte interface (SEI) layer and achieve the uniform deposition of lithium. In addition, the combination of the heat treatment method and electrospinning technology solves the problem of poor adhesion between the fiber film and the substrate. As a result, the PES/CuO-Cu2O (PCC) composite current collector still maintains a smooth and flat lithium-depositing layer at 5 mA cm-2. The PCC-assembled Li||Cu half-cell can operate stably for 320 cycles at 0.5 mA cm-2, which is about 4 times that of bare Cu. Furthermore, symmetrical batteries with PCC@Li can maintain excellent cycle stability for 1770 h. Accordingly, this work provides a low-cost and highly effective strategy for stabilizing the lithium metal anode.

[1]  Yanwen Ma,et al.  Ultralight Porous Cu Nanowire Aerogels as Stable Hosts for High Li-Content Metal Anodes. , 2022, ACS applied materials & interfaces.

[2]  X. Tao,et al.  Cationic Interfacial Layer toward a LiF-Enriched Interphase for Stable Li Metal Batteries , 2022, ACS Energy Letters.

[3]  Yanwen Ma,et al.  Porous Metal Current Collectors for Alkali Metal Batteries , 2022, Advanced science.

[4]  Z. Ju,et al.  Durable Lithium Metal Anodes Enabled by Interfacial Layers Based on Mechanically Interlocked Networks Capable of Energy Dissipation. , 2022, Angewandte Chemie.

[5]  Tao Wang,et al.  Red blood cell–like polyethersulfone (PES) particles prepared via electrostatic spraying as a regulating layer of lithium deposition , 2022, Ionics.

[6]  X. Tao,et al.  Biomass-Derived Anion-Anchoring Nano-CaCO3 Coating for Regulating Ion Transport on Li Metal Surface. , 2022, Nano letters.

[7]  Xiaokun Zhang,et al.  Vertically Aligned MXene Nanosheet Arrays for High‐Rate Lithium Metal Anodes , 2022, Advanced Energy Materials.

[8]  Guang Yang,et al.  Influence of Polymer Interfacial Protective Layer Thickness on the Stability of Lithium‐Metal Batteries , 2022, Advanced Materials Interfaces.

[9]  Yuliang Cao,et al.  A Novel Dendrite-Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton. , 2022, Small.

[10]  Chaoyang Wang,et al.  A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries , 2022, Nano Energy.

[11]  Jun-tao Li,et al.  Heteroatom-rich polymers as a protective film to control lithium growth for high-performance lithium-metal batteries , 2022, Journal of Power Sources.

[12]  Xueping Gao,et al.  Specific Adsorption Reinforced Interface Enabling Stable Lithium Metal Electrode , 2022, Advanced Functional Materials.

[13]  Lin-wang Wang,et al.  Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries , 2022, Nature Materials.

[14]  Shizhao Xiong,et al.  Electro‐Chemo‐Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes , 2022, Advanced Energy Materials.

[15]  Y. Gong,et al.  Constructing Artificial SEI Layer on Lithiophilic MXene Surface for High‐Performance Lithium Metal Anodes , 2022, Advanced science.

[16]  Z. Liu,et al.  Lithium/Graphene Composite Anode with 3D Structural LiF Protection Layer for High-Performance Lithium Metal Batteries. , 2022, ACS applied materials & interfaces.

[17]  Zhengkun Xie,et al.  2,2,2-Trifluoroethyl trifluoroacetate as effective electrolyte additive for uniform Li deposition in lithium metal batteries , 2022, Chemical Engineering Journal.

[18]  F. Mashayek,et al.  An Efficient Gel Polymer Electrolyte for Dendrite-Free and Long Cycle Life Lithium Metal Batteries , 2022, Energy Storage Materials.

[19]  Jiandong Liu,et al.  Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive. , 2022, Science bulletin.

[20]  Meinan Liu,et al.  Non-Flammable Liquid Polymer-in-Salt Electrolyte Enabling Secure and Dendrite-Free Lithium Metal Battery , 2022, Chemical Engineering Journal.

[21]  Zhenda Lu,et al.  Scalable Hierarchical Lithiophilic Engineering of Metal Foam Enables Stable Lithium Metal Batteries , 2022, Chemical Engineering Journal.

[22]  Yantao Zhang,et al.  Highly Stable Lithium Metal Anode Enabled by Lithiophilic and Spatial-Confined Spherical-Covalent Organic Framework , 2022, Energy Storage Materials.

[23]  Xianjue Chen,et al.  Regulating Lithium Metal Interface Using Seed-Coating Layer for High-Power Batteries , 2022, Chemical Engineering Journal.

[24]  X. Cao,et al.  Engineering and characterization of interphases for lithium metal anodes , 2021, Chemical science.

[25]  Hong Li,et al.  Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization , 2022, Nano Energy.

[26]  J. Lawson,et al.  Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning , 2021, Chemistry of Materials.

[27]  Tongchao Liu,et al.  In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes. , 2021, Nano letters.

[28]  Qunjie Xu,et al.  Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. , 2021, ACS applied materials & interfaces.

[29]  Yanwen Ma,et al.  Integrated Porous Cu Host Induced High-Stable Bidirectional Li Plating/Stripping Behavior for Practical Li Metal Batteries. , 2021, Small.

[30]  Weiguo Hu,et al.  Self-Healing Single-Ion-Conductive Artificial Polymeric Solid Electrolyte Interphases for Stable Lithium Metal Anodes , 2021, Nano Energy.

[31]  Jiaqi Huang,et al.  High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries , 2021, Journal of Energy Chemistry.

[32]  Y. Ye,et al.  Dynamic spatial progression of isolated lithium during battery operations , 2021, Nature.

[33]  C. Yi,et al.  3D Cubic Framework of Fluoride Perovskite SEI Inducing Uniform Lithium Deposition for Air-Stable and Dendrite-Free Lithium Metal Anodes , 2021, Chemical Engineering Journal.

[34]  H. Xiang,et al.  Multifunctional Electrolyte Additive Stabilizes Electrode-Electrolyte Interface Layers for High-Voltage Lithium Metal Batteries. , 2021, ACS applied materials & interfaces.

[35]  Chao Lai,et al.  Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes , 2021, Advanced Functional Materials.

[36]  J. Qi,et al.  Stable Lithium Metal Anode Achieved by Shortening Diffusion Path on Solid Electrolyte Interface Derived from Cu2O Lithiophilic Layer , 2021, Chemical Engineering Journal.

[37]  Y. Lai,et al.  A Self-adapting Artificial SEI Layer Enables Superdense Lithium Deposition for High Performance Lithium Anode , 2021, Energy Storage Materials.

[38]  Feng Wang,et al.  Highly stable and robust bi-electrodes interfacial protective films for practical lithium metal batteries , 2021 .

[39]  X. Qin,et al.  Synthesis design of interfacial structure for highly reversible lithium deposition , 2021, Journal of Materials Chemistry A.

[40]  Yurong Ren,et al.  Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries , 2021, Journal of Energy Chemistry.

[41]  Rui Zhang,et al.  Deciphering the Effect of Electrical Conductivity of Hosts on Lithium Deposition in Composite Lithium Metal Anodes , 2021, Advanced Energy Materials.

[42]  Hongbo Liu,et al.  Coupling a 3D Lithophilic Skeleton with a Fluorine-Enriched Interface to Enable Stable Lithium Metal Anode. , 2021, ACS applied materials & interfaces.

[43]  Ning Zhang,et al.  Anticorrosive Copper Current Collector Passivated by Self‐Assembled Porous Membrane for Highly Stable Lithium Metal Batteries , 2021, Advanced Functional Materials.

[44]  Junjie Zhang,et al.  Organic-Inorganic Hybrid SEI Induced by a New Lithium Salt for High-Performance Metallic Lithium Anodes. , 2021, ACS applied materials & interfaces.

[45]  Jie Lin,et al.  Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton , 2021 .

[46]  Qingping Wu,et al.  Dynamical SEI Reinforced by Open‐Architecture MOF Film with Stereoscopic Lithiophilic Sites for High‐Performance Lithium–Metal Batteries , 2021, Advanced Functional Materials.

[47]  Hong‐Jie Peng,et al.  New insights into “dead lithium” during stripping in lithium metal batteries , 2021 .

[48]  Jian-feng Li,et al.  Lithiophilic and Antioxidative Copper Current Collectors for Highly Stable Lithium Metal Batteries , 2021, Advanced Functional Materials.

[49]  H. Gong,et al.  The synergistic effect of Cu2O and boric acid forming solid electrolyte interphase layer to restrain the dendritic growth , 2020 .

[50]  Yanwen Ma,et al.  Advanced Current Collectors for Alkali Metal Anodes , 2020, Chemical Research in Chinese Universities.

[51]  Yanwen Ma,et al.  Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. , 2020, Nano letters.

[52]  Jiaqi Huang,et al.  Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries , 2019, Journal of Energy Chemistry.

[53]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[54]  Cationic Size Effect Promoting Dissolution of Nitrate Anion in Ester Electrolyte for LithiumMetal Batteries , 2022 .