CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION

We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R⊙. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).

[1]  T. Howard,et al.  CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES , 2016 .

[2]  I. Sokolov,et al.  DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL , 2016, 1605.05360.

[3]  C. Schrijver,et al.  A NUMERICAL STUDY OF LONG-RANGE MAGNETIC IMPACTS DURING CORONAL MASS EJECTIONS , 2016, 1603.04900.

[4]  Yuxi Chen,et al.  A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids , 2016, J. Comput. Phys..

[5]  T. Gombosi,et al.  Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration , 2015 .

[6]  A. Vourlidas,et al.  HOW COMMON ARE HOT MAGNETIC FLUX ROPES IN THE LOW SOLAR CORONA? A STATISTICAL STUDY OF EUV OBSERVATIONS , 2015, 1507.03766.

[7]  P. MacNeice,et al.  Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC , 2015 .

[8]  Manuela Temmer,et al.  HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL , 2014 .

[9]  W. Liu,et al.  Advances in Observing Various Coronal EUV Waves in the SDO Era and Their Seismological Applications (Invited Review) , 2014, 1404.0670.

[10]  J. Linker,et al.  A METHOD FOR EMBEDDING CIRCULAR FORCE-FREE FLUX ROPES IN POTENTIAL MAGNETIC FIELDS , 2013 .

[11]  T. Gombosi,et al.  ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING , 2013, 1311.4093.

[12]  N. Schwadron,et al.  GLOBAL NUMERICAL MODELING OF ENERGETIC PROTON ACCELERATION IN A CORONAL MASS EJECTION TRAVELING THROUGH THE SOLAR CORONA , 2013, 1406.2377.

[13]  U. Michigan,et al.  THE INTERACTION OF TWO CORONAL MASS EJECTIONS: INFLUENCE OF RELATIVE ORIENTATION , 2013, 1309.2210.

[14]  R. Evans,et al.  FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT , 2013, 1307.7603.

[15]  Xudong Sun,et al.  NUMERICAL SIMULATIONS OF CORONAL MASS EJECTION ON 2011 MARCH 7: ONE-TEMPERATURE AND TWO-TEMPERATURE MODEL COMPARISON , 2013 .

[16]  T. Gombosi,et al.  A GLOBAL WAVE-DRIVEN MAGNETOHYDRODYNAMIC SOLAR MODEL WITH A UNIFIED TREATMENT OF OPEN AND CLOSED MAGNETIC FIELD TOPOLOGIES , 2013, 1307.4510.

[17]  J. Richardson,et al.  ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS , 2013, 1512.07949.

[18]  N. Woolsey,et al.  Interaction of high Mach-number shocks in laser-produced plasmas , 2013 .

[19]  D. A. Biesecker,et al.  An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA‐Enlil heliospheric model , 2013 .

[20]  X. Cheng,et al.  THE DRIVER OF CORONAL MASS EJECTIONS IN THE LOW CORONA: A FLUX ROPE , 2012, 1211.6524.

[21]  S. Antiochos,et al.  THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES , 2012 .

[22]  S. Wu,et al.  A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION , 2012 .

[23]  B. Anderson,et al.  MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE , 2012, 1209.2866.

[24]  T. Gombosi,et al.  THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS , 2012 .

[25]  R. Frazin,et al.  CORONAL HEATING BY SURFACE ALFVÉN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND , 2012 .

[26]  T. Gombosi,et al.  MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS , 2012, 1208.3141.

[27]  A. Rouillard,et al.  A CORONAL HOLE'S EFFECTS ON CORONAL MASS EJECTION SHOCK MORPHOLOGY IN THE INNER HELIOSPHERE , 2012, 1206.3584.

[28]  N. Lugaz,et al.  UNDERSTANDING SDO/AIA OBSERVATIONS OF THE 2010 JUNE 13 EUV WAVE EVENT: DIRECT INSIGHT FROM A GLOBAL THERMODYNAMIC MHD SIMULATION , 2012 .

[29]  A. Vourlidas,et al.  On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode (Invited Review) , 2012, 1203.1135.

[30]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[31]  R. Frazin,et al.  A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY , 2012 .

[32]  Jie Zhang,et al.  Observation of an evolving magnetic flux rope before and during a solar eruption , 2012, Nature Communications.

[33]  E. Quataert,et al.  INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE , 2011, 1110.3029.

[34]  N. Lugaz,et al.  NUMERICAL INVESTIGATION OF A CORONAL MASS EJECTION FROM AN ANEMONE ACTIVE REGION: RECONNECTION AND DEFLECTION OF THE 2005 AUGUST 22 ERUPTION , 2011, 1106.5284.

[35]  S. Wu,et al.  A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN–YANG OVERSET GRID AND AN AMR GRID , 2011, The Astrophysical Journal.

[36]  Bart van der Holst,et al.  OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES , 2011, 1104.5672.

[37]  Victor J. Pizzo,et al.  Polarimetric localization: A new tool for calculating the CME speed and direction of propagation in near‐real time , 2011 .

[38]  B. Heber,et al.  Spatial and temporal variations of CIRs: Multi-point observations by STEREO , 2011 .

[39]  D. Odstrcil,et al.  Wang‐Sheeley‐Arge–Enlil Cone Model Transitions to Operations , 2011 .

[40]  N. Lugaz,et al.  STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS , 2011 .

[41]  R. Frazin,et al.  A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVÉN WAVES , 2010 .

[42]  N. Lugaz,et al.  Numerical Modeling of Interplanetary Coronal Mass Ejections and Comparison with Heliospheric Images , 2010, 1008.5394.

[43]  M. Owens,et al.  Cone model-based SEP event calculations for applications to multipoint observations , 2010 .

[44]  J. Davila,et al.  Background Subtraction for the SECCHI/COR1 Telescope Aboard STEREO , 2010 .

[45]  G. Attrill,et al.  NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO , 2009, 0909.3095.

[46]  Tamas I. Gombosi,et al.  TRANSPORT EQUATION FOR MHD TURBULENCE: APPLICATION TO PARTICLE ACCELERATION AT INTERPLANETARY SHOCKS , 2009 .

[47]  D. A. Biesecker,et al.  Geometric Localization of CMEs in 3D Space Using STEREO Beacon Data: First Results , 2009 .

[48]  N. Gopalswamy,et al.  CME interactions with coronal holes and their interplanetary consequences , 2009 .

[49]  T. Gombosi,et al.  BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT , 2008 .

[50]  I. Sokolov,et al.  Three-dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations , 2008, 0805.3707.

[51]  C. Russell,et al.  STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview , 2008 .

[52]  N. Lugaz,et al.  Observational evidence of CMEs interacting in the inner heliosphere as inferred from MHD simulations , 2008, 0808.3775.

[53]  J. Jost,et al.  The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories , 2008 .

[54]  N. Gopalswamy,et al.  Prediction of Space Weather Using an Asymmetric Cone Model for Halo CMEs , 2007, 0710.4372.

[55]  M. Dryer,et al.  Three‐dimensional global simulation of interplanetary coronal mass ejection propagation from the Sun to the heliosphere: Solar event of 12 May 1997 , 2007 .

[56]  Gábor Tóth,et al.  Sun‐to‐thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework , 2007 .

[57]  N. Lugaz,et al.  Numerical Investigation of the Homologous Coronal Mass Ejection Events from Active Region 9236 , 2007 .

[58]  M. Velli,et al.  A Semiempirical Magnetohydrodynamical Model of the Solar Wind , 2007 .

[59]  Yang Liu,et al.  MHD simulation of two successive interplanetary disturbances driven by cone‐model parameters in IPS‐based solar wind , 2006 .

[60]  N. Gopalswamy,et al.  On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations , 2006 .

[61]  J. Richardson,et al.  Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections , 2006, physics/0602164.

[62]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[63]  Ward B. Manchester,et al.  Numerical Simulation of the Interaction of Two Coronal Mass Ejections from Sun to Earth , 2005 .

[64]  P. Chen,et al.  A Full View of EIT Waves , 2005 .

[65]  K. Powell,et al.  Coronal Mass Ejection Shock and Sheath Structures Relevant to Particle Acceleration , 2005 .

[66]  Dusan Odstrcil,et al.  Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures , 2005 .

[67]  David J. McComas,et al.  Direct evidence for magnetic reconnection in the solar wind near 1 AU , 2004 .

[68]  T. Forbes,et al.  A New Field Line Advection Model for Solar Particle Acceleration , 2004 .

[69]  K. Olson,et al.  A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation , 2004 .

[70]  M. Dryer,et al.  Real‐time shock arrival predictions during the “Halloween 2003 epoch” , 2004 .

[71]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[72]  T. Forbes,et al.  A Numerical Model of a Coronal Mass Ejection: Shock Development with Implications for the Acceleration of GeV Protons , 2004 .

[73]  L. Ofman,et al.  Cone model for halo CMEs: Application to space weather forecasting , 2004 .

[74]  R. Harwood,et al.  Middle-atmospheric response to a future increase in humidity arising from increased methane abundance , 2004 .

[75]  T. Forbes,et al.  Observational evidence of new current sheets trailing coronal mass ejections , 2003 .

[76]  S. Wu,et al.  Direct Detection of a Coronal Mass Ejection-Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images , 2003 .

[77]  T. Gombosi,et al.  Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .

[78]  J. Raymond,et al.  Dynamical and Physical Properties of a Post-Coronal Mass Ejection Current Sheet , 2003 .

[79]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[80]  S. Wu,et al.  Direct Detection of a CME-Associated Shock in LASCO White Light Images , 2003, astro-ph/0308367.

[81]  Haimin Wang,et al.  Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results , 2002 .

[82]  W. Liu,et al.  Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model , 2002 .

[83]  J. Giacalone,et al.  Particle Acceleration in Solar Wind Compression Regions , 2002 .

[84]  N. Gopalswamy,et al.  Predicting the 1‐AU arrival times of coronal mass ejections , 2001 .

[85]  S. Wu,et al.  Three‐dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope , 2001 .

[86]  M. Dryer,et al.  Improvements to the HAF solar wind model for space weather predictions , 2001 .

[87]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[88]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[89]  R. Smith,et al.  Balmer-dominated Spectra of Nonradiative Shocks in the Cygnus Loop, RCW 86, and Tycho Supernova Remnants , 2000, astro-ph/0010496.

[90]  P. Roe,et al.  Regular Article: A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[91]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[92]  Jean-Pierre Delaboudiniere,et al.  SOHO/EIT Observations of the 1997 April 7 Coronal Transient: Possible Evidence of Coronal Moreton Waves , 1999 .

[93]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[94]  J. B. Gurman,et al.  SOHO/EIT observations of an Earth‐directed coronal mass ejection on May 12, 1997 , 1998 .

[95]  B. Low,et al.  A Time-dependent Three-dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection , 1998 .

[96]  B. Au,et al.  Eit Observations of the Extreme Ultraviolet Sun , 1997 .

[97]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[98]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[99]  J. Gosling The solar flare myth , 1993 .

[100]  Michelle F. Thomsen,et al.  Electron heating and the potential jump across fast mode shocks. [in interplanetary space , 1988 .

[101]  S. Wu,et al.  A three-dimensional, time-dependent numerical modeling of super-sonic, super-alfve´nic MHD flow , 1988 .

[102]  A. Hundhausen,et al.  The coronal mass ejection of July 6, 1980: A candidate for interpretation as a coronal shock wave , 1987 .

[103]  K. Papadopoulos,et al.  Microinstabilities associated with a high Mach number, perpendicular bow shock , 1984 .

[104]  K. Hakamada,et al.  Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms , 1982 .

[105]  L. Burlaga Hydromagnetic waves and discontinuities in the solar wind , 1971 .

[106]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[107]  J. Linker,et al.  MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .

[108]  S. Wu,et al.  Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25 28 October 2003 solar events , 2007 .

[109]  Kenneth G. Powell,et al.  Three‐dimensional MHD simulation of a flux rope driven CME , 2004 .

[110]  A. Hundhausen,et al.  Observation of a coronal transient from 1.2 to 6 solar radii , 1985 .