The Perfect Binary One-Error-Correcting Codes of Length $15$: Part I—Classification
暂无分享,去创建一个
[1] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[2] Petteri Kaski,et al. libexact User's Guide, Version 1.0. , 2008 .
[3] Tim Blackmore,et al. Every Binary (2m-2, 22m-2-m, 3) Code Can Be Lengthened to Form a Perfect Code of Length 2m-1 , 1999, IEEE Trans. Inf. Theory.
[4] Alexander Vardy,et al. Perfect binary codes: constructions, properties, and enumeration , 1994, IEEE Trans. Inf. Theory.
[5] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[6] Sergey V. Avgustinovich,et al. On the Number of $1$-Perfect Binary Codes: A Lower Bound , 2008, IEEE Transactions on Information Theory.
[7] P. Kaski,et al. Classification Algorithms for Codes and Designs , 2005 .
[8] Faina I. Solov'eva,et al. Reconstructing Extended Perfect Binary One-Error-Correcting Codes From Their Minimum Distance Graphs , 2009, IEEE Transactions on Information Theory.
[9] Kevin T. Phelps,et al. The Perfect Binary One-Error-Correcting Codes of Length 15: Part II—Properties , 2009, IEEE Transactions on Information Theory.
[10] Kevin T. Phelps,et al. Switching Equivalence Classes of Perfect Codes , 1999, Des. Codes Cryptogr..
[11] Patric R. J. Östergård,et al. The Steiner quadruple systems of order 16 , 2006, J. Comb. Theory, Ser. A.
[12] Tim Blackmore. Every Binary ( , ) Code Can Be Lengthened to Form a Perfect Code of Length , 1999 .
[13] Kevin T. Phelps,et al. An enumeration of 1-perfect binary codes , 2000, Australas. J Comb..
[14] S. K. Zaremba. Covering Problems Concerning Abelian Groups , 1952 .
[15] Patric R. J. Östergård,et al. Classification Algorithms for Codes and Designs (Algorithms and Computation in Mathematics) , 2005 .
[16] Olof Heden,et al. A survey of perfect codes , 2008, Adv. Math. Commun..
[17] B. McKay. nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .