The Perfect Binary One-Error-Correcting Codes of Length $15$: Part I—Classification

A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 is presented. There are 5983 such inequivalent perfect codes and 2165 extended perfect codes. Efficient generation of these codes relies on the recent classification of Steiner quadruple systems of order 16. Utilizing a result of Blackmore, the optimal binary one-error-correcting codes of length 14 and the (15, 1024, 4) codes are also classified; there are 38 408 and 5983 such codes, respectively.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  Petteri Kaski,et al.  libexact User's Guide, Version 1.0. , 2008 .

[3]  Tim Blackmore,et al.  Every Binary (2m-2, 22m-2-m, 3) Code Can Be Lengthened to Form a Perfect Code of Length 2m-1 , 1999, IEEE Trans. Inf. Theory.

[4]  Alexander Vardy,et al.  Perfect binary codes: constructions, properties, and enumeration , 1994, IEEE Trans. Inf. Theory.

[5]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[6]  Sergey V. Avgustinovich,et al.  On the Number of $1$-Perfect Binary Codes: A Lower Bound , 2008, IEEE Transactions on Information Theory.

[7]  P. Kaski,et al.  Classification Algorithms for Codes and Designs , 2005 .

[8]  Faina I. Solov'eva,et al.  Reconstructing Extended Perfect Binary One-Error-Correcting Codes From Their Minimum Distance Graphs , 2009, IEEE Transactions on Information Theory.

[9]  Kevin T. Phelps,et al.  The Perfect Binary One-Error-Correcting Codes of Length 15: Part II—Properties , 2009, IEEE Transactions on Information Theory.

[10]  Kevin T. Phelps,et al.  Switching Equivalence Classes of Perfect Codes , 1999, Des. Codes Cryptogr..

[11]  Patric R. J. Östergård,et al.  The Steiner quadruple systems of order 16 , 2006, J. Comb. Theory, Ser. A.

[12]  Tim Blackmore Every Binary ( , ) Code Can Be Lengthened to Form a Perfect Code of Length , 1999 .

[13]  Kevin T. Phelps,et al.  An enumeration of 1-perfect binary codes , 2000, Australas. J Comb..

[14]  S. K. Zaremba Covering Problems Concerning Abelian Groups , 1952 .

[15]  Patric R. J. Östergård,et al.  Classification Algorithms for Codes and Designs (Algorithms and Computation in Mathematics) , 2005 .

[16]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..

[17]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .