The mechanism and kinetics of evaporation from laser irradiated UO2 surfaces

A theoretical analysis of laser evaporation experiments for the determination of the high temperture saturated vapor pressure of uranium dioxide is presented. The interaction of laser radation with the condensed phase is discussed and the timescales involved in the energy equilibration processes are given. The mechanism of evaporation is described within the framework of the Terrace–Ledge–Kink model, where it is shown that by using symmetry properties of ionic crystal lattices, the surface Madelung potentials and binding energies of ions and neutral ionic units may be determined. Results are presented for NaCl, CsCl, and UO2 surfaces. Based on these calculations, general conclusions are drawn on the nature of the evaporating species. In addition, it is shown that the multispecies evaporation from uranium dioxide is fundamentally related to the amount of atomic and electronic disorder in the surface layer. The effects of the kinetics of surface reactions on the rate of evaporation are investigated. Paralle...

[1]  J. D. Levine,et al.  Theory and Observation of Intrinsic Surface States on Ionic Crystals , 1966 .

[2]  D. Turnbull,et al.  MELTING KINETICS OF QUARTZ AND CRISTOBALITE , 1961 .

[3]  E. O. Schulz-Dubois,et al.  Laser Handbook , 1972 .

[4]  R. Wilson Physics of liquid metal fast breeder reactor safety , 1977 .

[5]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[6]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  U C Paek,et al.  Observation of Laser-induced Explosion of Solid Materials and Correlation with Theory. , 1974, Applied optics.

[8]  G. M. Pound Selected Values of Evaporation and Condensation Coefficients for Simple Substances , 1972 .

[9]  D. A. Young Thermodynamics of nuclear materials International atomic energy agency, Vienna, proceedings series, 808 pages, 1962, 66s, $ 11.00, NF 44, DM 38.50 , 1963 .

[10]  N. Cabrera,et al.  XLV. On the dislocation theory of evaporation of crystals , 1956 .

[11]  J. Hirth,et al.  Evaporation of Metal Crystals , 1957 .

[12]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[13]  R. Tsu,et al.  Reasons to believe pulsed laser annealing of Si does not involve simple thermal melting , 1979 .

[14]  Raphael Tsu,et al.  Nonthermal pulsed laser annealing of Si; plasma annealing , 1979 .

[15]  P. W. Tasker The surface energies, surface tensions and surface structure of the alkali halide crystals , 1979 .

[16]  C. Cercignani,et al.  Present state of vapour pressure measurements up to 5000 K, and critical point data prediction of uranium oxide☆ , 1979 .

[17]  W. Jost Diffusion and Electrolytic Conduction in Crystals (Ionic Semiconductors) , 1933 .

[18]  R. D. Bont,et al.  Laser induced melting and superheating in Te and in films for optical data storage , 1981 .

[19]  Ellen J. Yoffa,et al.  Dynamics of dense laser-induced plasmas , 1980 .

[20]  Andrei Nikolaevich Nesmeianov,et al.  Vapor pressure of the chemical elements , 1963 .

[21]  P. Masri,et al.  Thermodynamic properties of uranium dioxide: Electronic contributions to the specific heat , 1980 .

[22]  H. Palmer,et al.  The hydrodynamic stability of rapidly evaporating liquids at reduced pressure , 1976, Journal of Fluid Mechanics.

[23]  R. Thorn,et al.  High‐Temperature Thermodynamic Properties of Uranium Dioxide , 1956 .

[24]  K. Herzfeld On the Speed of Sublimation and Condensation , 1935 .

[25]  P. W. Tasker The surface properties of uranium dioxide , 1979 .

[26]  R. Howe,et al.  The structure of molten sodium chloride , 1975 .

[27]  C. Catlow,et al.  Point defect and electronic properties of uranium dioxide , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[29]  R. D. Bont,et al.  Superheating of thin films for optical recording , 1981 .