Identifying surface reaction intermediates with photoemission tomography

[1]  Alexander Gottwald,et al.  The U125 insertion device beamline at the Metrology Light Source. , 2019, Journal of synchrotron radiation.

[2]  S. Soubatch,et al.  Dependence of the adsorption height of graphenelike adsorbates on their dimensionality , 2018, Physical Review B.

[3]  Daniel M. Packwood,et al.  Materials informatics for self-assembly of functionalized organic precursors on metal surfaces , 2018, Nature Communications.

[4]  S. Soubatch,et al.  Understanding the photoemission distribution of strongly interacting two-dimensional overlayers , 2017 .

[5]  K. Müllen,et al.  Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. , 2017, Analytical chemistry.

[6]  Naihao Chiang,et al.  Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[7]  P. Ruffieux,et al.  On‐Surface Synthesis of Atomically Precise Graphene Nanoribbons , 2016, Advanced materials.

[8]  Á. Rubio,et al.  Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. , 2016, Nature chemistry.

[9]  S. Soubatch,et al.  Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography , 2015, Nature Communications.

[10]  T. Taketsugu,et al.  From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. , 2015, ACS nano.

[11]  F. Salmassi,et al.  Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission , 2014, Nature Communications.

[12]  P. Weiss,et al.  Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. , 2014, ACS nano.

[13]  C. Sauer,et al.  Complete determination of molecular orbitals by measurement of phase symmetry and electron density , 2014, Nature Communications.

[14]  N. Mårtensson,et al.  Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons : Combined Core-Level Spectroscopy and STM Study , 2014 .

[15]  S. Louie,et al.  Local Electronic and Chemical Structure of Oligo-acetylene Derivatives Formed Through Radical Cyclizations at a Surface , 2014, Nano letters.

[16]  S. Soubatch,et al.  Imaging the wave functions of adsorbed molecules , 2013, Proceedings of the National Academy of Sciences.

[17]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[18]  I. Swart,et al.  Formation and characterization of a molecule-metal-molecule bridge in real space. , 2013, Journal of the American Chemical Society.

[19]  Leo Gross,et al.  Bond-Order Discrimination by Atomic Force Microscopy , 2012, Science.

[20]  J. Dentzer,et al.  Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis. , 2012, Analytical chemistry.

[21]  Alexandre Tkatchenko,et al.  Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. , 2012, Physical review letters.

[22]  C. Ambrosch-Draxl,et al.  Orbital tomography: Deconvoluting photoemission spectra of organic molecules , 2011 .

[23]  M. Persson,et al.  Reversible bond formation in a gold-atom-organic-molecule complex as a molecular switch. , 2010, Physical review letters.

[24]  N. Moll,et al.  Organic structure determination using atomic-resolution scanning probe microscopy. , 2010, Nature chemistry.

[25]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[26]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[27]  Stephen Berkebile,et al.  Reconstruction of Molecular Orbital Densities from Photoemission Data , 2009, Science.

[28]  Peter Liljeroth,et al.  Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing , 2009, Science.

[29]  D. Castner,et al.  Electron Spectroscopy for Chemical Analysis , 2009 .

[30]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[31]  Wendell A Lim,et al.  Synthetic biology: lessons from the history of synthetic organic chemistry , 2007, Nature Chemical Biology.

[32]  C. Ambrosch-Draxl,et al.  Intra- and Intermolecular Band Dispersion in an Organic Crystal , 2007, Science.

[33]  K. Emtsev,et al.  First results from a second generation toroidal electron spectrometer. , 2005 .

[34]  S. Hüfner,et al.  Photoemission spectroscopy—from early days to recent applications , 2005 .

[35]  Meyer,et al.  Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering , 2000, Physical review letters.

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  Ertl,et al.  Atomic and macroscopic reaction rates of a surface-catalyzed reaction , 1997, Science.

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  J. Niemantsverdriet,et al.  Applications of secondary ion mass spectrometry in catalysis and surface chemistry , 1994 .

[42]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[43]  Y. Shen,et al.  Surface properties probed by second-harmonic and sum-frequency generation , 1989, Nature.

[44]  P. Puschnig,et al.  Photoemission Tomography: Valence Band Photoemission as a Quantitative Method for Investigating Molecular Films , 2018 .

[45]  Teodoro Laino,et al.  Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. , 2011, Nature chemistry.