An Improved Binomial Lattice Method for Multi‐Dimensional Options

A binomial lattice approach is proposed for valuing options whose payoff depends on multiple state variables following correlated geometric Brownian processes. The proposed approach relies on two simple ideas: a log‐transformation of the underlying processes, which is step by step consistent with the continuous‐time diffusions, and a change of basis of the asset span, to transform asset prices into uncorrelated processes. An additional transformation is applied to approximate driftless dynamics. Even if these features are simple and straightforward to implement, it is shown that they significantly improve the efficiency of the multi‐dimensional binomial algorithm. A thorough test of efficiency is provided compared with most popular binomial and trinomial lattice approaches for multi‐dimensional diffusions. Although the order of convergence is the same for all lattice approaches, the proposed method shows improved efficiency.

[1]  Dilip B. Madan,et al.  The multinomial option pricing model and its Brownian and poisson limits , 1989 .

[2]  Dietmar P.J. Leisen,et al.  Pricing the American put option: A detailed convergence analysis for binomial models , 1998 .

[3]  M. Subrahmanyam,et al.  Multivariate Binomial Approximations for Asset Prices with Non-Stationary Variance and Covariance Characteristics , 1995 .

[4]  Bin Gao,et al.  The adaptive mesh model: a new approach to efficient option pricing , 1999 .

[5]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[6]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[7]  B. Kamrad,et al.  Multinomial Approximating Models for Options with k State Variables , 1991 .

[8]  Ren-Raw Chen,et al.  A universal lattice , 1999 .

[9]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[10]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[11]  P. Boyle Options: A Monte Carlo approach , 1977 .

[12]  S. Ross,et al.  AN INTERTEMPORAL GENERAL EQUILIBRIUM MODEL OF ASSET PRICES , 1985 .

[13]  Timothy J. Riddiough,et al.  Insights on the Effect of Land Use Choice: The Perpetual Option on the Best of Two Underlying Assets , 1996 .

[14]  Dietmar Leisen,et al.  Binomial models for option valuation - examining and improving convergence , 1995 .

[15]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[16]  Marco Wilkens,et al.  Lean Trees - a General Approach for Improving Performance of Lattice Models for Option Pricing , 2001 .

[17]  C. Los OPTION PRICING I , 2000 .

[18]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[19]  Alan G. White,et al.  The Use of the Control Variate Technique in Option Pricing , 1988, Journal of Financial and Quantitative Analysis.

[20]  Richard Breen,et al.  The Accelerated Binomial Option Pricing Model , 1991 .

[21]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[22]  R. McDonald,et al.  Option Pricing When the Underlying Asset Earns a Below-Equilibrium Rate of Return: A Note , 1984 .

[23]  Richard J. Rendleman,et al.  Two-State Option Pricing , 1979 .

[24]  Eduardo S. Schwartz The Pricing of Commodity‐Linked Bonds , 1982 .

[25]  San-Lin Chung,et al.  Option Pricing in a Multi-Asset, Complete Market Economy , 2002, Journal of Financial and Quantitative Analysis.

[26]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[27]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[28]  Eduardo S. Schwartz,et al.  The Valuation of Commodity Contingent Claims , 1994 .

[29]  Alexander J. Triantis,et al.  Valuing Flexibility as a Complex Option , 1990 .

[30]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[31]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[32]  Kaushik I. Amin,et al.  CONVERGENCE OF AMERICAN OPTION VALUES FROM DISCRETE‐ TO CONTINUOUS‐TIME FINANCIAL MODELS1 , 1994 .

[33]  Alan Genz,et al.  Numerical computation of rectangular bivariate and trivariate normal and t probabilities , 2004, Stat. Comput..

[34]  G. Constantinides MARKET RISK ADJUSTMENT IN PROJECT VALUATION , 1978 .

[35]  Niklas Ekvall,et al.  A lattice approach for pricing of multivariate contingent claims , 1996 .

[36]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[37]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[38]  H. Johnson Options on the Maximum or the Minimum of Several Assets , 1987, Journal of Financial and Quantitative Analysis.

[39]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[40]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[41]  Eduardo S. Schwartz,et al.  Evaluating Environmental Investments: a Real Options Approach , 1998 .

[42]  Kaushik I. Amin On the Computation of Continuous Time Option Prices Using Discrete Approximations , 1991, Journal of Financial and Quantitative Analysis.

[43]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .