GRID INDEPENDENT CONVERGENCE OF THE MULTIGRID METHOD

The multigrid method for numerical solution of systems of first-order partial differential equations is analyzed. The smoothing iterations are of polynomial type and are used on all grids. Under certain conditions the convergence of the iterations is independent of the grid size. This is explained by the propagation of smooth error modes out through the boundary and the damping of oscillatory modes. An upper bound is derived on the number of multigrid V-cycles needed to solve a two-dimensional, scalar equation. Numerical experiments with a simple scalar equation and the Euler equations confirm the theoretical results. contrast to the multigrid solution of elliptic equations where the exact solution on the coarsest grid is needed to prove grid independent convergence (7). In this paper an explanation of this difference is offered. We show that under certain conditions the number of multigrid iterations to calculate the solution of a first-order problem with constant coefficients is independent of the grid. The theoretical results are confirmed in numerical experiments using the Euler equations. The numerical discretization of a linear partial differential equation by a finite difference or finite volume method is written

[1]  W. Wahl Über die klassische Lösbarkeit des Cauchy-Problems für nichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen , 1970 .

[2]  Cathleen S. Morawetz,et al.  Notes on Time Decay and Scattering for Some Hyperbolic Problems , 1987 .

[3]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[4]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  Philip L. Roe,et al.  Accelerated convergence of Jameson's finite-volume Euler scheme using Van der Houwen integrators , 1985 .

[7]  Per Lötstedt,et al.  Analysis of the multigrid method applied to first order systems , 1989 .

[8]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[9]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[10]  H. Deconinck,et al.  Two dimensional optimization of smoothing properties of multistage schemes applied to hyperbolic equations , 1990 .

[11]  V. Vatsa,et al.  development of a multigrid code for 3-D Navier-Stokes equations and its application to a grid-refinement study , 1990 .

[12]  R. Ni A multiple grid scheme for solving the Euler equations , 1981 .

[13]  W. A. Mulder,et al.  Multigrid relaxation for the Euler equations , 1985 .

[14]  R. C. Swanson,et al.  Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1990 .

[15]  P. R. Garabedian,et al.  Estimation of the relaxation factor for small mesh size , 1956 .

[16]  Björn Engquist,et al.  Steady state computations for wave propagation problems , 1987 .

[17]  Per Lötstedt,et al.  Analysis of multigrid methods for general systems of PDE , 1991 .

[18]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[19]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[20]  Per Lötstedt,et al.  Fourier analysis of multigrid methods for general systems of PDEs , 1993 .

[21]  B. Koren Multigrid and defect correction for the steady Navier-Stokes equations , 1990 .