Scale separation for implicit large eddy simulation

With implicit large eddy simulation (ILES) the truncation error of the discretization scheme acts as subgrid-scale (SGS) model for the computation of turbulent flows. Although ILES is comparably simple, numerically robust and easy to implement, a considerable challenge is the design of numerical discretization schemes resulting in a physically consistent SGS model. In this work, we consider the implicit SGS modeling capacity of the adaptive central-upwind weighted-essentially-non-oscillatory scheme (WENO-CU6) [X.Y. Hu, Q. Wang, N.A. Adams, An adaptive central-upwind weighted essentially non-oscillatory scheme, J. Comput. Phys. 229 (2010) 8952-8965] by incorporating a physically-motivated scale-separation formulation. Scale separation is accomplished by a simple modification of the WENO weights. The resulting modified scheme maintains the shock-capturing capabilities of the original WENO-CU6 scheme while it is also able to reproduce the Kolmogorov range of the kinetic-energy spectrum for turbulence at the limit of infinite Reynolds number independently of grid resolution. For isentropic compressible turbulence the pseudo-sound regime of the dilatational kinetic-energy spectrum and the non-Gaussian probability-density function of the longitudinal velocity derivative are reproduced.

[1]  Victor Yakhot,et al.  THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ANOMALOUS SCALING OF STRUCTURE FUNCTIONS AND DYNAMIC CONSTRAINTS ON TURBULENCE SIMULATIONS , 2007 .

[2]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[3]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[4]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[5]  Parviz Moin,et al.  EDDY SHOCKLETS IN DECAYING COMPRESSIBLE TURBULENCE , 1991 .

[6]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[7]  Pierre Sagaut,et al.  Homogeneous Turbulence Dynamics: Coupled Effects: Rotation, Stratification, Strain, and Shear , 2008 .

[8]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[9]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[10]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[11]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[12]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[13]  Nikolaus A. Adams,et al.  Assessment of Implicit Large-Eddy Simulation with a conservative immersed interface method for turbulent cylinder flow , 2010 .

[14]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[15]  U. Piomelli,et al.  Turbulent structures in accelerating boundary layers , 2000 .

[16]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[18]  Christer Fureby,et al.  RECENT PROGRESS ON FLUX-LIMITING BASED IMPLICIT LARGE EDDY SIMULATION , 2006 .

[19]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[20]  P. Sagaut,et al.  Boundary Conditions for Large-Eddy Simulation of Compressible Flows , 2009 .

[21]  Christer Fureby,et al.  On Flux-Limiting-Based Implicit Large Eddy Simulation , 2007 .

[22]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[23]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[24]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[25]  L. Skrbek,et al.  On the decay of homogeneous isotropic turbulence , 2000 .

[26]  Marcel Lesieur,et al.  3D isotropic turbulence at very high Reynolds numbers: EDQNM study , 2000 .

[27]  Dimitris Drikakis,et al.  On the implicit large eddy simulations of homogeneous decaying turbulence , 2007, J. Comput. Phys..

[28]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[29]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[30]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[31]  N. Adams,et al.  Implicit subgrid-scale modeling by adaptive deconvolution , 2004 .

[32]  P. Woodward,et al.  Convergence Tests for the Piecewise Parabolic Method and Navier—Stokes Solutions for Homogeneous Compressible Turbulence , 2000 .

[33]  P. Sagaut,et al.  Homogeneous Turbulence Dynamics , 2008 .

[34]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[35]  Andrew W. Cook,et al.  Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing , 2007 .

[36]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[37]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[38]  Soshi Kawai,et al.  Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows , 2010, J. Comput. Phys..