A dinuclear and a 1D zigzag chain of copper(II) complexes with N2O donor Schiff base ligand and psuedohalides (azide and dicyanamide): Studies on catecholase-like activity

[1]  C. Gómez‐García,et al.  Synthesis, crystal structure and magnetic properties of two alternating double μ1,1 and μ1,3 azido bridged Cu(ii) and Ni(ii) chains. , 2014, Dalton transactions.

[2]  Yeasin Sikdar,et al.  Syntheses, crystallographic characterization, catecholase activity and magnetic properties of three novel aqua bridged dinuclear nickel(II) complexes , 2014 .

[3]  L. Mandal,et al.  Crystal structure, catecholase activity and ESI-MS of a mixed valence cobalt(III)–cobalt(II) complex derived from a macrocyclic ligand: Identification/proposition of hydrogen bonded metal complex⋯solvent aggregates in ESI-MS , 2014 .

[4]  J. Vittal,et al.  Influence of inductive effects and steric encumbrance on the catecholase activities of copper(II) complexes of reduced Schiff base ligands. , 2014, Dalton transactions.

[5]  R. Peralta,et al.  New mononuclear copper(II) complex based on a salen derivative ligand with an unusual coordination and its catecholase activity , 2013 .

[6]  Ashutosh Ghosh,et al.  Structural diversity in the complexes based on a hetero-trimetallic Cu2Cd node and dicyanamide spacer: a hexanuclear cluster, a 1D stair polymer and a 1D zigzag chain as supramolecular isomers, and a 3D network , 2013 .

[7]  Ashutosh Ghosh,et al.  Solvomorphism and catecholase activities of bis(μ-phenoxido)dicopper(II) complexes , 2013 .

[8]  K. Rissanen,et al.  Copper(II) complexes with tridentate N2O donor Schiff base isomers: Modulation of molecular and crystalline architectures through supramolecular interactions , 2013 .

[9]  E. Şahin,et al.  Synthesis, crystal structure, spectroscopic, thermal, catechol oxidase and catalase-like studies: New copper(II) complexes of 2-benzoylbenzoate and 2-pyridilpropanol ligands , 2013 .

[10]  P. N. Samanta,et al.  Air oxygenation chemistry of 4-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands: synthesis, structure, magnetic and computational studies. , 2013, Dalton transactions.

[11]  M. Drew,et al.  Insertion of a hydroxido bridge into a diphenoxido dinuclear copper(II) complex: drastic change of the magnetic property from strong antiferromagnetic to ferromagnetic and enhancement in the catecholase activity. , 2012, Inorganic chemistry.

[12]  S. Cho,et al.  An unprecedented "linear-bent" isomerism in tri-nuclear Cu2(II)Zn(II) complexes with a salen type di-Schiff base ligand. , 2012, Dalton transactions.

[13]  N. Aliaga-Alcalde,et al.  Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. , 2012, Dalton transactions.

[14]  W. Haase,et al.  Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. , 2012, Inorganic chemistry.

[15]  C. Gómez‐García,et al.  Synthesis of the first heterometalic star-shaped oxido-bridged MnCu3 complex and its conversion into trinuclear species modulated by pseudohalides (N3(-), NCS- and NCO-): structural analyses and magnetic properties. , 2012, Dalton transactions.

[16]  A. M. García-Deibe,et al.  CuII2L based polymeric ladder using dicyanamide bridges: Synthesis, crystal structure and magnetic studies , 2011 .

[17]  Chandan Adhikary,et al.  Structural and magnetic studies on copper(II) azido complexes , 2010 .

[18]  M. Drew,et al.  Use of a reduced Schiff-Base ligand to prepare novel chloro-bridged chains of rare Cu(II) trinuclear complexes with mixed azido/oxo and chloro/oxo bridges. , 2010, Inorganic chemistry.

[19]  M. Drew,et al.  A unique example of structural and magnetic diversity in four interconvertible copper(II)-azide complexes with the same schiff base ligand: a monomer, a dimer, a chain, and a layer. , 2010, Inorganic chemistry.

[20]  Cindy J. Castelle,et al.  An Unconventional Copper Protein Required for Cytochrome c Oxidase Respiratory Function under Extreme Acidic Conditions , 2010, The Journal of Biological Chemistry.

[21]  M. Manassero,et al.  Tetranuclear copper(ii)-Schiff-base complexes as active catalysts for oxidation of cyclohexane and toluene. , 2010, Dalton transactions.

[22]  V. Davidson,et al.  Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine. , 2009, Biochemistry.

[23]  M. Drew,et al.  Anion directed template synthesis of Cu(II) complexes of a N,N,O donor mono-condensed Schiff base ligand: A molecular scaffold forming highly ordered H-bonded rectangular grids , 2009 .

[24]  S. Chaudhuri,et al.  Catalytic efficacy of Schiff-base copper(II) complexes: Synthesis, X-ray structure and olefin oxidation , 2008 .

[25]  Song Gao,et al.  Azide-bridged one-dimensional Mn(III) polymers: effects of side group of Schiff base ligands on structure and magnetism. , 2007, Inorganic chemistry.

[26]  J. Reedijk,et al.  Synthetic models of the active site of catechol oxidase: mechanistic studies. , 2006, Chemical Society reviews.

[27]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[28]  M. Giorgi,et al.  Catechol oxidase activity of dicopper complexes with N-donor ligands , 2003 .

[29]  S. García‐Granda,et al.  Structural and functional models for the dinuclear copper active site in catechol oxidases. Synthesis, X-ray crystal structures, magnetic and spectroscopic properties of mu-methoxo-bridged dinuclear copper(II) complexes with N-substituted sulfonamide ligands. , 2003, Journal of inorganic biochemistry.

[30]  A. Martell,et al.  μ-imidazole-bridged dicopper(II) macrocyclic complex: synthesis, structure, stability and Tyr-like activity , 2003 .

[31]  Chunhua Yan,et al.  Bimetallic sandwiches assembled with chelated Cu/Zn cations and manganese dicyanamide polymeric ladders , 2003 .

[32]  Anthony L. Spek,et al.  Journal of , 1993 .

[33]  R. Mukherjee,et al.  Catecholase activity of dinuclear copper(II) complexes with variable endogenous and exogenous bridge , 2002 .

[34]  L. Rossi,et al.  Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties. , 2002, Inorganic chemistry.

[35]  H. Pritzkow,et al.  Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core. , 2002, Chemistry.

[36]  Y. H. Liu,et al.  Structural correlation of catecholase-like activities of oxy-bridged dinuclear copper(II) complexes. , 2001, Journal of inorganic biochemistry.

[37]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[38]  M. Thirumavalavan,et al.  SYNTHESIS, SPECTRAL, MAGNETIC AND ELECTROCHEMICAL PROPERTIES OF NEW DIMERIC COPPER(II) COMPLEXES , 1999 .

[39]  K. Gita,et al.  Synthesis, characterisation, electrochemical studies and catecholase activity of a new series of binuclear copper (II) complexes , 1998 .

[40]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[41]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[42]  K. Karlin,et al.  Catecholate coordination to copper: structural characterization of a tetrachloro-o-catecholate-bridged dicopper(II) complex as a model for intermediates in copper-catalyzed oxidation of catechols , 1985 .

[43]  A. W. Addison,et al.  Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate , 1984 .