The visual hull of piecewise smooth objects

The visual hull relates the shape of an object to its silhouettes. This paper develops the theory of the visual hull of piecewise smooth objects, as those used in CAD applications. We show that the surface of the visual hull can be constructed using patches of nine visual event surfaces of the aspect graph of the object. A detailed analysis allows to prune away many surfaces and patches that are not relevant to the construction. Examples of construction of visual hulls are presented.

[1]  D. Kriegman,et al.  On recognizing and positioning curved 3D objects from image contours , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[2]  Sylvain Petitjean,et al.  A Computational Geometric Approach to Visual Hulls , 1998, Int. J. Comput. Geom. Appl..

[3]  O. Platonova Singularities of projections of smooth surfaces , 1984 .

[4]  Kevin W. Bowyer,et al.  Computing the Generalized Aspect Graph for Objects with Moving Parts , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jake K. Aggarwal,et al.  Model Construction and Shape Recognition from Occluding Contours , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Raimund Seidel,et al.  Efficiently Computing and Representing Aspect Graphs of Polyhedral Objects , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Aldo Laurentini The visual hull of curved objects , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  David J. Kriegman,et al.  Computing exact aspect graphs of curved objects: Algebraic surfaces , 1990, International Journal of Computer Vision.

[9]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. Koenderink,et al.  The singularities of the visual mapping , 1976, Biological Cybernetics.

[11]  David J. Kriegman,et al.  Computing Exact Aspect Graphs of Curved Objects: Parametric Surfaces , 1990, AAAI.

[12]  Dmitry B. Goldgof,et al.  The scale space aspect graph , 1992, CVPR.

[13]  Andrea Bottino,et al.  The visual hull of smooth curved objects , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Aldo Laurentini Computing the visual hull of solids of revolution , 1999, Pattern Recognit..

[15]  Dmitry B. Goldgof,et al.  The Scale Space Aspect Graph , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jiang Yu Zheng,et al.  Acquiring 3-D Models from Sequences of Contours , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Jake K. Aggarwal,et al.  Volumetric Descriptions of Objects from Multiple Views , 1983, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. H. Rieger On the complexity and computation of view graphs of piecewise smooth algebraic surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Paulo R. S. Mendonça,et al.  Epipolar geometry from profiles under circular motion , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Joachim H. Rieger,et al.  On the classification of views of piecewise smooth objects , 1987, Image Vis. Comput..

[21]  Sylvain Petitjean,et al.  The enumerative geometry of projective algebraic surfaces and the complexity of aspect graphs , 1996, International Journal of Computer Vision.

[22]  Joachim H. Rieger,et al.  Notes on the complexity of exact view graph algorithms for piecewise smooth Algebraic Surfaces , 1998, Discret. Comput. Geom..

[23]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.