Energy balance and metabolic changes in an overwintering wolf spider, Schizocosa stridulans.

[1]  N. M. Teets,et al.  Supplemental Foods Affect Energetic Reserves, Survival, and Spring Reproduction in Overwintering Adult Hippodamia convergens (Coleoptera: Coccinellidae) , 2019, Environmental Entomology.

[2]  B. Sinclair,et al.  Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect , 2019, Proceedings of the Royal Society B.

[3]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[4]  J. Harwood,et al.  Selectivity underlies the dissociation between seasonal prey availability and prey consumption in a generalist predator , 2018, Molecular ecology.

[5]  V. Košťál,et al.  Thermal analysis of ice and glass transitions in insects that do and do not survive freezing , 2018, Journal of Experimental Biology.

[6]  J. Overgaard,et al.  The Integrative Physiology of Insect Chill Tolerance. , 2017, Annual review of physiology.

[7]  A. Edison,et al.  Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates. , 2016, Integrative and comparative biology.

[8]  Kazuhiro Tanaka,et al.  Accumulation of glycerol and myo-inositol in the overwintering nymphs of the wolf spider Pardosa astrigera (Araneae: Lycosidae) , 2015 .

[9]  Brent J Sinclair,et al.  Cold truths: how winter drives responses of terrestrial organisms to climate change , 2015, Biological reviews of the Cambridge Philosophical Society.

[10]  J. Harwood,et al.  Tradeoff in two winter‐active wolf spiders: increased mortality for increased growth , 2014 .

[11]  S. Hayward,et al.  Molecular basis of chill resistance adaptations in poikilothermic animals , 2014, Journal of Experimental Biology.

[12]  A. Pullin Physiological relationships between insect diapause and cold tolerance: Coevolution or coincidence? , 2013 .

[13]  J. Feder,et al.  Environmental interactions during host race formation: host fruit environment moderates a seasonal shift in phenology in host races of Rhagoletis pomonella , 2012 .

[14]  B. Sinclair,et al.  Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. , 2011, Journal of insect physiology.

[15]  V. Košťál,et al.  Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster , 2011, PloS one.

[16]  M. Traugott,et al.  Which prey sustains cold‐adapted invertebrate generalist predators in arable land? Examining prey choices by molecular gut‐content analysis , 2011 .

[17]  R. Jaskuła,et al.  What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe? , 2011, ZooKeys.

[18]  B. O. Wolf,et al.  Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex , 2011 .

[19]  G. Uetz,et al.  Spectral reflectance and communication in the wolf spider, Schizocosa ocreata (Hentz): simultaneous crypsis and background contrast in visual signals , 2011, Behavioral Ecology and Sociobiology.

[20]  S. Wilder,et al.  Spider Nutrition: An Integrative Perspective , 2011 .

[21]  D. Denlinger,et al.  Energetics of insect diapause. , 2011, Annual review of entomology.

[22]  S. Pekár,et al.  Is there intraguild predation between winter-active spiders (Araneae) on apple tree bark? , 2010 .

[23]  Che Jian,et al.  A survey of nectar feeding by spiders in three different habitats , 2010 .

[24]  R. Eisert,et al.  Hypercarnivory and the brain: protein requirements of cats reconsidered , 2010, Journal of Comparative Physiology B.

[25]  M. Schaefer Winter ecology of spiders (Araneida) , 2009 .

[26]  R. Bradley,et al.  Plant nectar increases survival, molting, and foraging in two foliage wandering spiders , 2009 .

[27]  W. Gronwald,et al.  Advances in amino acid analysis , 2009, Analytical and bioanalytical chemistry.

[28]  L. Bubacco,et al.  Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. , 2008, Cryo letters.

[29]  D. Denlinger,et al.  Meeting the energetic demands of insect diapause: nutrient storage and utilization. , 2007, Journal of insect physiology.

[30]  D. Wise,et al.  Predicted climate change alters the indirect effect of predators on an ecosystem process , 2006, Proceedings of the National Academy of Sciences.

[31]  H. Danks Insect adaptations to cold and changing environments1 , 2006, The Canadian Entomologist.

[32]  P. Yancey,et al.  Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses , 2005, Journal of Experimental Biology.

[33]  B. Gunnarsson Interspecific predation as a mortality factor among overwintering spiders , 1985, Oecologia.

[34]  J. Duman Subzero temperature tolerance in spiders: The role of thermal-hysteresis-factors , 1979, Journal of comparative physiology.

[35]  R. Lundheim Physiological and ecological significance of biological ice nucleators. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  J. Bale Insects and low temperatures: from molecular biology to distributions and abundance. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  G. Uetz,et al.  Multisensory Cues and Multimodal Communication in Spiders: Insights from Video/Audio Playback Studies , 2002, Brain, Behavior and Evolution.

[38]  V. Kost'ál,et al.  Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta). , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[39]  Benrong Chen,et al.  Impact of intraguild predators on survival of a forest-floor wolf spider , 1999, Oecologia.

[40]  D. Wise,et al.  Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality , 1999, Oecologia.

[41]  W. Topp,et al.  Distributional pattern and development of the winter-active beetle Quedius pellax (Staphylinidae) , 1998 .

[42]  A. Pullin,et al.  Glycerol and glucose accumulation during diapause in a tropical beetle , 1993 .

[43]  A. Pullin,et al.  Physiological aspects of diapause and cold tolerance during overwintering in Pieris brassicae , 1991 .

[44]  J. Duman,et al.  Adaptations of Insects to Subzero Temperatures , 1991, The Quarterly Review of Biology.

[45]  K. Storey,et al.  Biochemistry of Cryoprotectants , 1991 .

[46]  G. E. Stratton A New Species of Wolf Spider, Schizocosa Stridulans (Araneae, Lycosidae) , 1991 .

[47]  R. Jaenicke Protein structure and function at low temperatures. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  B. Gunnarsson Body size and survival: implications for an overwintering spider , 1988 .

[49]  W. Kirchner Behavioural and Physiological Adaptations to Cold , 1987 .

[50]  W. Nentwig The Prey of Spiders , 1987 .

[51]  C. Aitchison Feeding Ecology of Winter-Active Spiders , 1987 .

[52]  K. Storey,et al.  Winter survival of the gall fly larva, Eurosta solidaginis: Profiles of fuel reserves and cryoprotectants in a natural population , 1986 .

[53]  K. E. Zachariassen Physiology of cold tolerance in insects. , 1985, Physiological reviews.

[54]  E. Van Handel Rapid determination of glycogen and sugars in mosquitoes. , 1985, Journal of the American Mosquito Control Association.

[55]  E. Van Handel Rapid determination of total lipids in mosquitoes. , 1985, Journal of the American Mosquito Control Association.

[56]  C. Aitchison LOW TEMPERATURE FEEDING BY WINTER-ACTIVE SPIDERS , 1984 .

[57]  J. Musso Nutritive and ecological requirements of robber flies (Diptera: Brachycera: Asilidae) , 1983 .

[58]  T. D. Morgan,et al.  Free amino acids of the haemolymph of the southwestern corn borer and the European corn borer in relation to their diapause , 1983 .

[59]  R. Foelix,et al.  The biology of spiders. , 1987 .

[60]  L. Sømme Supercooling and winter survival in terrestrial arthropods , 1982 .

[61]  W. Block,et al.  Cold hardiness of some Alpine Collembola , 1980 .

[62]  C. Aitchison Notes on Low Temperature Activity of Oligochaetes, Gastropods and Centipedes in Southern Canada , 1979 .

[63]  H. Danks MODES OF SEASONAL ADAPTATION IN THE INSECTS: I. WINTER SURVIVAL , 1978, The Canadian Entomologist.

[64]  W. Kirchner,et al.  Untersuchungen zur Kälteresistenz der Schilfradspinne Araneus cornutus (Araneidae) , 1969 .

[65]  R. Salt Principles of Insect Cold-Hardiness , 1961 .