Target identification based on the transferable belief model interpretation of dempster-shafer model
暂无分享,去创建一个
[1] Philippe Smets,et al. Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.
[2] Henk A. Lensen,et al. Comparison of belief functions and voting method for fusion of mine detection sensors , 2001, SPIE Defense + Commercial Sensing.
[3] Jürg Kohlas,et al. A Mathematical Theory of Hints , 1995 .
[4] Philippe Smets,et al. The Transferable Belief Model for Quantified Belief Representation , 1998 .
[5] Dennis M. Buede,et al. A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion , 1997, IEEE Trans. Syst. Man Cybern. Part A.
[6] George J. Klir,et al. Measures of uncertainty in the Dempster-Shafer theory of evidence , 1994 .
[7] Frank Klawonn,et al. The Dynamic of Belief in the Transferable Belief Model and Specialization-Generalization Matrices , 1992, UAI.
[8] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[9] James Llinas,et al. Multisensor Data Fusion , 1990 .
[10] Edward H. Shortliffe,et al. The Dempster-Shafer theory of evidence , 1990 .
[11] G. Klir. Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? , 1987 .
[12] Philippe Smets,et al. Probability, Possibility, Belief: Which and Where? , 1998 .
[13] Bruce G. Buchanan,et al. The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .
[14] Philippe Smets. Non-standard logics for automated reasoning , 1988 .
[15] G. Klir,et al. Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .
[16] Lalla Merieme Zouhal. Contribution à l'application de la théorie des fonctions de croyance en reconnaissance des formes , 1997 .
[17] Fabrice Janez. Fusion de sources d'information définies sur des référentiels non exhaustifs différents : solutions proposées sous le formalisme de la théorie de l'évidence , 1996 .
[18] Thierry Denoeux,et al. An Adaptive k-NN Rule Based on Dempster-Shafer Theory , 1995, CAIP.
[19] P. P. Shenoy,et al. On Transforming Belief Function Models to Probability Models , 2003 .
[20] Prakash P. Shenoy,et al. A Comparison of Methods for Transforming Belief Function Models to Probability Models , 2003, ECSQARU.
[21] Philippe Smets,et al. The Normative Representation of Quantified Beliefs by Belief Functions , 1997, Artif. Intell..
[22] Douglas L. Smith. Detection technologies for mines and minelike targets , 1995, Defense, Security, and Sensing.
[23] Philippe Smets,et al. Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..
[24] Tod S. Levitt,et al. Uncertainty in artificial intelligence , 1988 .
[25] Philippe Smets. No Dutch Book can be built against the TBM even though update is not obtained by Bayes rule of conditioning , 1999 .
[26] Gabriele Lohmann. An Evidential Reasoning Approach to the Classification of Satellite Images , 1991, ECSQARU.
[27] François Delmotte. Comparison of the performances of decision aimed algorithms with Bayesian and beliefs basis , 2001, Int. J. Intell. Syst..
[28] Philippe Smets,et al. Computational aspects of the Mobius transformation , 1990, UAI.
[29] A. Appriou,et al. 4 - Théorie de l'évidence et cadres de discernement non exhaustifs , 1996 .
[30] Philippe Smets,et al. Data association in multi‐target detection using the transferable belief model , 2001, Int. J. Intell. Syst..
[31] Petr Hájek,et al. On Belief Functions , 1992, Advanced Topics in Artificial Intelligence.
[32] Philippe Smets,et al. Information Content of an Evidence , 1983, Int. J. Man Mach. Stud..
[33] Jürg Kohlas,et al. Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .
[34] Khaled Mellouli,et al. About Conditional Belief Function Independence , 2001, ECSQARU.
[35] Ph. Smets,et al. THE CONCEPT OF DISTINCT EVIDENCE , 1999 .
[36] Philippe Smets,et al. What is Dempster-Shafer's model? , 1994 .
[37] Alain Nifle,et al. Un argument pour le choix entre décision pignistique et maximum de plausibilité en théorie de l'évidence , 1997 .
[38] Philippe Smets,et al. Practical Uses of Belief Functions , 1999, UAI.
[39] Alain Nifle. Modelisation comportementale en fusion de donnees. Application a l'identification d'objets ou de situation , 1998 .
[40] Lalla Merieme Zouhal,et al. A Comparison between Fuzzy and Evidence-theoretic K-nn Rules for Pattern Recognition , 1995 .
[41] Frank Klawonn,et al. On the axiomatic justification of Dempster's rule of combination , 1992, Int. J. Intell. Syst..
[42] Isabelle Bloch,et al. Modeling, combining, and discounting mine detection sensors within the Dempster-Shafer framework , 2000, Defense, Security, and Sensing.
[43] Arthur P. Dempster. A Class of Random Convex Polytopes , 1972 .
[44] Smets Ph.,et al. Belief functions, Non-standard logics for automated reasoning , 1988 .
[45] P. Smets. Decision Making in a Context where Uncertainty is Represented by Belief Functions , 2002 .
[46] M. Degroot. Optimal Statistical Decisions , 1970 .
[47] D. G. Rees,et al. Foundations of Statistics , 1989 .
[48] Iman Jarkass. Reconnaissance de l'état d'un système dynamique à l'aide d'un réseau de Petri crédibiliste , 1998 .
[49] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[50] Didier Dubois,et al. The principle of minimum specificity as a basis for evidential reasoning , 1986, IPMU.
[51] Philippe Smets,et al. Fast Algorithms for Dempster-Shafer Theory , 1990, IPMU.
[52] Marc Acheroy,et al. Characterization of mine detection sensors in terms of belief functions and their fusion, first results , 2000, Proceedings of the Third International Conference on Information Fusion.
[53] Thierry Denoeux,et al. A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..
[54] Philippe Smets,et al. The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[55] Yen-Teh Hsia. Characterizing Belief with Minimum Commitment , 1991, IJCAI.