Target identification based on the transferable belief model interpretation of dempster-shafer model

This paper explains how multisensor data fusion and target identification can be performed within the transferable belief model (TBM), a model for the representation of quantified uncertainty based on belief functions. We present the underlying theory, in particular the general Bayesian theorem needed to transform likelihoods into beliefs and the pignistic transformation needed to build the probability measure required for decision making. We present how this method applies in practice. We compare its solution with the classical one, illustrating it with an embarrassing example, where the TBM and the probability solutions completely disagree. Computational efficiency of the belief-function solution was supposedly proved in a study that we reproduce and we show that in fact the opposite conclusions hold. The results presented here can be extended directly to many problems of data fusion and diagnosis.

[1]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[2]  Henk A. Lensen,et al.  Comparison of belief functions and voting method for fusion of mine detection sensors , 2001, SPIE Defense + Commercial Sensing.

[3]  Jürg Kohlas,et al.  A Mathematical Theory of Hints , 1995 .

[4]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[5]  Dennis M. Buede,et al.  A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[6]  George J. Klir,et al.  Measures of uncertainty in the Dempster-Shafer theory of evidence , 1994 .

[7]  Frank Klawonn,et al.  The Dynamic of Belief in the Transferable Belief Model and Specialization-Generalization Matrices , 1992, UAI.

[8]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[9]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[10]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[11]  G. Klir Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? , 1987 .

[12]  Philippe Smets,et al.  Probability, Possibility, Belief: Which and Where? , 1998 .

[13]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[14]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[15]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[16]  Lalla Merieme Zouhal Contribution à l'application de la théorie des fonctions de croyance en reconnaissance des formes , 1997 .

[17]  Fabrice Janez Fusion de sources d'information définies sur des référentiels non exhaustifs différents : solutions proposées sous le formalisme de la théorie de l'évidence , 1996 .

[18]  Thierry Denoeux,et al.  An Adaptive k-NN Rule Based on Dempster-Shafer Theory , 1995, CAIP.

[19]  P. P. Shenoy,et al.  On Transforming Belief Function Models to Probability Models , 2003 .

[20]  Prakash P. Shenoy,et al.  A Comparison of Methods for Transforming Belief Function Models to Probability Models , 2003, ECSQARU.

[21]  Philippe Smets,et al.  The Normative Representation of Quantified Beliefs by Belief Functions , 1997, Artif. Intell..

[22]  Douglas L. Smith Detection technologies for mines and minelike targets , 1995, Defense, Security, and Sensing.

[23]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[24]  Tod S. Levitt,et al.  Uncertainty in artificial intelligence , 1988 .

[25]  Philippe Smets No Dutch Book can be built against the TBM even though update is not obtained by Bayes rule of conditioning , 1999 .

[26]  Gabriele Lohmann An Evidential Reasoning Approach to the Classification of Satellite Images , 1991, ECSQARU.

[27]  François Delmotte Comparison of the performances of decision aimed algorithms with Bayesian and beliefs basis , 2001, Int. J. Intell. Syst..

[28]  Philippe Smets,et al.  Computational aspects of the Mobius transformation , 1990, UAI.

[29]  A. Appriou,et al.  4 - Théorie de l'évidence et cadres de discernement non exhaustifs , 1996 .

[30]  Philippe Smets,et al.  Data association in multi‐target detection using the transferable belief model , 2001, Int. J. Intell. Syst..

[31]  Petr Hájek,et al.  On Belief Functions , 1992, Advanced Topics in Artificial Intelligence.

[32]  Philippe Smets,et al.  Information Content of an Evidence , 1983, Int. J. Man Mach. Stud..

[33]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[34]  Khaled Mellouli,et al.  About Conditional Belief Function Independence , 2001, ECSQARU.

[35]  Ph. Smets,et al.  THE CONCEPT OF DISTINCT EVIDENCE , 1999 .

[36]  Philippe Smets,et al.  What is Dempster-Shafer's model? , 1994 .

[37]  Alain Nifle,et al.  Un argument pour le choix entre décision pignistique et maximum de plausibilité en théorie de l'évidence , 1997 .

[38]  Philippe Smets,et al.  Practical Uses of Belief Functions , 1999, UAI.

[39]  Alain Nifle Modelisation comportementale en fusion de donnees. Application a l'identification d'objets ou de situation , 1998 .

[40]  Lalla Merieme Zouhal,et al.  A Comparison between Fuzzy and Evidence-theoretic K-nn Rules for Pattern Recognition , 1995 .

[41]  Frank Klawonn,et al.  On the axiomatic justification of Dempster's rule of combination , 1992, Int. J. Intell. Syst..

[42]  Isabelle Bloch,et al.  Modeling, combining, and discounting mine detection sensors within the Dempster-Shafer framework , 2000, Defense, Security, and Sensing.

[43]  Arthur P. Dempster A Class of Random Convex Polytopes , 1972 .

[44]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[45]  P. Smets Decision Making in a Context where Uncertainty is Represented by Belief Functions , 2002 .

[46]  M. Degroot Optimal Statistical Decisions , 1970 .

[47]  D. G. Rees,et al.  Foundations of Statistics , 1989 .

[48]  Iman Jarkass Reconnaissance de l'état d'un système dynamique à l'aide d'un réseau de Petri crédibiliste , 1998 .

[49]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[50]  Didier Dubois,et al.  The principle of minimum specificity as a basis for evidential reasoning , 1986, IPMU.

[51]  Philippe Smets,et al.  Fast Algorithms for Dempster-Shafer Theory , 1990, IPMU.

[52]  Marc Acheroy,et al.  Characterization of mine detection sensors in terms of belief functions and their fusion, first results , 2000, Proceedings of the Third International Conference on Information Fusion.

[53]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[54]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Yen-Teh Hsia Characterizing Belief with Minimum Commitment , 1991, IJCAI.