Evolutionary Strategies for Building Risk-Optimal Portfolios

This chapter describes an evolutionary approach to portfolio optimization. It rejects some assumptions from classic models, introduces alternative risk measures and proposes three evolutionary algorithms to solve the optimization problem. In order to validate the approach proposed, results of a number of experiments using data from the Paris Stock Exchange are presented.

[1]  Jerzy J. Korczak,et al.  Evolutionary building of stock trading experts in a real-time system , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[2]  Florin Aftalion Les techniques de mesure de performance , 2003 .

[3]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[4]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[5]  Jerzy J. Korczak,et al.  Evolution Strategy in Portfolio Optimization , 2001, Artificial Evolution.

[6]  W. V. Harlow Asset Allocation in a Downside-Risk Framework , 1991 .

[7]  Chi-Fu Huang,et al.  Foundations for financial economics , 1988 .

[8]  Jerzy Korczak,et al.  Stock timing using genetic algorithms , 2002 .

[9]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[10]  Piotr Lipinski,et al.  Building Risk-Optimal Portfolio Using Evolutionary Strategies , 2007, EvoWorkshops.

[11]  Edward Tsang,et al.  EDDIE-automation, a decision support tool for financial forecasting , 2004 .

[12]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[13]  Jerzy J. Korczak,et al.  Performance Measures in an Evolutionary Stock Trading Expert System , 2004, International Conference on Computational Science.