Mammography Tomosynthesis System for High Performance 3D Imaging

Tomosynthesis provides a major advance in image quality compared to conventional projection mammography by effectively eliminating the effects of superimposed tissue on anatomical structures of interest. Early tomosynthesis systems focused primarily on feasibility assessment by providing 3-dimensional images to determine performance advantages. However, tomosynthesis image quality depends strongly on three key parameters: 1) detector performance at low dose, 2) angular range and number of projections acquired in the tomosynthesis scan, and 3) reconstruction algorithm processing characteristics used to create slice images from the measured projections. In this work, a new GE mammo-graphy tomosynthesis research system was developed that incorporates key improvements in each of these three areas compared to an early feasibility prototype system in use at Massachusetts General Hospital from 2000 to 2004. The performance gains that can be achieved by these enhancements are cha-racterized, and clinical images acquired with the system at the University of Michigan Cancer and Geriatrics Center are presented. The advanced research system also provides the ability to acquire mechanically co-registered x-ray tomosynthesis and ultrasound images of the breast, and initial dual modality images are also presented.