Implication Intensity: From the Basic Statistical Definition to the Entropic Version

[1]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[4]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[5]  Fabrice Guillet,et al.  A User-Driven Process for Mining Association Rules , 2000, PKDD.

[6]  Wynne Hsu,et al.  Finding Interesting Patterns Using User Expectations , 1999, IEEE Trans. Knowl. Data Eng..

[7]  Fabrice Guillet,et al.  Improving the Discovery of Association Rules with Intensity of Implication , 1998, PKDD.

[8]  Abraham Silberschatz,et al.  On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.

[9]  I C Lerman,et al.  Likelihood linkage analysis (LLA) classification method: an example treated by hand. , 1993, Biochimie.

[10]  Alex Alves Freitas,et al.  On rule interestingness measures , 1999, Knowl. Based Syst..

[11]  Régis Gras,et al.  Les fondements de l'analyse statistique implicative et quelques prolongements pour la fouille de données , 2001 .

[12]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[13]  Jean-Marc Bernard,et al.  Implicative Analysis for Multivariate Binary Data using an Imprecise Dirichlet Model , 2002, ISIPTA.

[14]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[15]  J. Loevinger A systematic approach to the construction and evaluation of tests of ability. , 1947 .

[16]  Pang-Ning Tan,et al.  Interestingness Measures for Association Patterns : A Perspective , 2000, KDD 2000.