Invisibility and supervisibility: Radiation dynamics in a discrete electromagnetic cloak

We study the radiation dynamics of an electric dipole source placed near or inside a discrete invisibility cloak. We show that the main features of radiation dynamics can be understood in terms of the interaction of the source with a nonideal cloak in which local-field effects associated with the discrete geometry play a crucial role. As a result, radiation dynamics in a discrete cloak can differ drastically from what a source would experience in an ideal, continuous cloak. This can lead, for instance, to an enhancement of the emission by the cloak, thus making the source more visible to an outside observer than it would be without the cloak. The two main physical mechanisms for enhanced, or inhibited, radiation dynamics are the coupling of the source to leaky modes inside the cloak, and the coupling of the source with the lattice of the discrete cloak, via the local field. We also explore the robustness of the effect to material dispersion and losses.

[1]  S. Guenneau,et al.  The colours of cloaks , 2011 .

[2]  Hongsheng Chen,et al.  Broadband polygonal invisibility cloak for visible light , 2012, Scientific Reports.

[3]  Viktor A. Podolskiy,et al.  A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance , 2005, Proceedings of the Royal Society A.

[4]  G. Kattawar,et al.  Zero-backscatter cloak for aspherical particles using a generalized DDA formalism. , 2008, Optics express.

[5]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[6]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[7]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[8]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[9]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[10]  P. Chaumet,et al.  Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment. , 2010, Optics express.

[11]  J. Sipe,et al.  Quantum electrodynamics near an interface , 1984 .

[12]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[13]  Wenshan Cai,et al.  Designs for optical cloaking with high-order transformations. , 2008, Optics express.

[14]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[15]  P. Chaumet,et al.  Efficient iterative solution of the discrete dipole approximation for magnetodielectric scatterers. , 2009, Optics letters.

[16]  P. Tassin,et al.  Confining light in deep subwavelength electromagnetic cavities , 2010 .

[17]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[18]  P. Chaumet,et al.  Local-field correction for an interstitial impurity in a crystal. , 2002, Optics letters.

[19]  Jin Au Kong,et al.  Extraordinary surface voltage effect in the invisibility cloak with an active device inside. , 2007, Physical review letters.

[20]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[21]  R. McPhedran,et al.  Density of states functions for photonic crystals. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  P. Chaumet,et al.  Electromagnetic forces on a discrete spherical invisibility cloak under time-harmonic illumination. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[24]  J. Lee,et al.  Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. , 2009, Optics express.

[25]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[27]  Che Ting Chan,et al.  Extending the bandwidth of electromagnetic cloaks , 2007 .

[28]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[29]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[30]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[31]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[32]  Oscar P. Bruno,et al.  Superlens-cloaking of small dielectric bodies in the quasistatic regime , 2007 .

[33]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[35]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[36]  J. Fischer,et al.  Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. , 2011, Optics letters.

[37]  Andrea Alù,et al.  Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. , 2012, Physical review letters.

[38]  Matti Lassas,et al.  Approximate quantum cloaking and almost-trapped states. , 2008, Physical review letters.

[39]  M. Qiu,et al.  Cylindrical invisibility cloak with simplified material parameters is inherently visible. , 2007, Physical review letters.

[40]  Coupled dipole method for radiation dynamics in finite photonic crystal structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[42]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[43]  Jon Opsal,et al.  Analytic representations of the dielectric functions of materials for device and structural modeling , 1998 .

[44]  M. Qiu,et al.  Scattering characteristics of simplified cylindrical invisibility cloaks. , 2007, Optics express.

[45]  U. Chettiar,et al.  Nonmagnetic cloak with minimized scattering , 2007 .

[46]  Jason Soric,et al.  Experimental Verification of Three-Dimensional Plasmonic Cloaking in Free-Space , 2012 .

[47]  Girish S. Agarwal,et al.  Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries , 1975 .

[48]  R. McPhedran,et al.  Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. , 2007, Optics express.

[49]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[50]  EVANESCENT LIGHT SCATTERING : THE VALIDITY OF THE DIPOLE APPROXIMATION , 1998 .

[51]  Stephen M. Barnett,et al.  Decay of excited atoms in absorbing dielectrics , 1996 .

[52]  P. Chaumet,et al.  Environment-Induced Modification of Spontaneous Emission: Single-Molecule Near-Field Probe , 2001 .

[53]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[54]  Matti Lassas,et al.  Cloaking a sensor via transformation optics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Optical force on a discrete invisibility cloak in time-dependent fields , 2011 .

[56]  A. Kildishev,et al.  Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. , 2009, Physical review letters.

[57]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[58]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[59]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.