Exact solution of Pontryagin's equations of optimal control—Part 1

In the treatment of constrained optimal control processes, it is customary to employ the Pontryagin maximum principle, which requires the solution of a two-point boundary-value problem. Various economic, mechanical, and biological control processes are of this type, including optimization of hemodialysis. Generally speaking, two-point boundary-value problems are more difficult to treat computationally than initial-value or Cauchy problems. In this paper, a Cauchy system is derived for a class of optimal control processes, and it is then shown that the solution of the Cauchy problem satisfies the Pontryagin equations.

[1]  Robert E. Kalaba,et al.  Derivation and validation of an initial-value method for certain nonlinear two-point boundary-value problems , 1968 .

[2]  L. Collatz The numerical treatment of differential equations , 1961 .

[3]  R. Kalaba,et al.  Invariant Imbedding and Sequential Interpolating Filters for Nonlinear Processes , 1969 .

[4]  R. Kalaba,et al.  AN INITIAL VALUE METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF CONVOLUTION TYPE , 1968 .

[5]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[6]  R. Kalaba,et al.  The invariant imbedding numerical method for Fredholm integral equations with degenerate kernels , 1968 .

[7]  R. Kalaba,et al.  Optimal trajectories for quadratic variational processes via invariant imbedding , 1969 .

[8]  Robert E. Kalaba,et al.  Invariant imbedding and the numerical integration of boundary-value problems for unstable linear systems of ordinary differential equations , 1967, CACM.

[9]  Robert E. Kalaba,et al.  Verification of the invariant imbedding method for certain Fredholm integral equations , 1968 .

[10]  C. Lanczos The variational principles of mechanics , 1949 .

[11]  Nasser E. Nahi,et al.  Estimation Theory and Applications , 1969 .

[12]  Richard Bellman,et al.  INVARIANT IMBEDDING AND NONVARIATIONAL PRINCIPLES IN ANALYTICAL DYNAMICS , 1966 .

[13]  R. Kalaba,et al.  Invariant imbedding and optimal control theory , 1969 .

[14]  Robert E. Kalaba,et al.  Dynamic Programming and Modern Control Theory , 1966 .

[15]  R. Sridhar,et al.  Cauchy and Fredholm methods for Euler equations , 1968 .

[16]  Robert E. Kalaba,et al.  Invariant imbedding and a class of variational problems , 1969 .

[17]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .