Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms

Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems, max independent set and min vertex cover.

[1]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[2]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[3]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[4]  Vangelis Th. Paschos,et al.  Fast Algorithms for max independent set , 2010, Algorithmica.

[5]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[6]  Marek Cygan,et al.  Exponential-time approximation of weighted set cover , 2009, Inf. Process. Lett..

[7]  J. Davenport Editor , 1960 .

[8]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[9]  Bruno Escoffier,et al.  Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 278 Efficient Approximation of Min Set Cover by " Low-complexity " Exponential Algorithms Efficient Approximation of Min Set Cover by " Low-complexity " Exponential Algorithms , 2022 .

[10]  Vangelis Th. Paschos,et al.  A Bottom-Up Method and Fast Algorithms for max independent set , 2010, SWAT.

[11]  Liming Cai,et al.  Fixed-Parameter Approximation: Conceptual Framework and Approximability Results , 2010, Algorithmica.

[12]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[13]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[14]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[15]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[16]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[17]  Vangelis Th. Paschos,et al.  An O*(1.0977n) Exact Algorithm for max independent set in Sparse Graphs , 2008, IWPEC.

[18]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[19]  Hans Ulrich Simon,et al.  On Approximate Solutions for Combinatorial Optimization Problems , 1990, SIAM J. Discret. Math..

[20]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[21]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[22]  Marcin Pilipczuk,et al.  Exponential-Time Approximation of Hard Problems , 2008, ArXiv.

[23]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[24]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[25]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[26]  Ge Xia,et al.  Labeled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard Problems , 2003, Algorithmica.

[27]  Andreas Björklund,et al.  Inclusion--Exclusion Algorithms for Counting Set Partitions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[28]  Vangelis Th. Paschos,et al.  Efficient approximation of min set cover by moderately exponential algorithms , 2009, Theor. Comput. Sci..

[29]  Piotr Berman,et al.  On the Approximation Properties of Independent Set Problem in Degree 3 Graphs , 1999, WADS.

[30]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[31]  Ryan Williams,et al.  Confronting hardness using a hybrid approach , 2006, SODA '06.

[32]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[33]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[34]  Yijia Chen,et al.  On Parameterized Approximability , 2006, IWPEC.

[35]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[36]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[37]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.