Mean field dynamics of fermions and the time-dependent Hartree-Fock equation
暂无分享,去创建一个
[1] François Golse,et al. Derivation of the Schrödinger–Poisson equation from the quantum N-body problem , 2002 .
[2] Derivation of the nonlinear Schr\"odinger equation with Coulomb potential , 2001 .
[3] A. Gottlieb. Markov Transitions and the Propagation of Chaos , 2000, math/0001076.
[4] François Golse,et al. Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .
[5] Claude Le Bris,et al. ON THE TIME-DEPENDENT HARTREE–FOCK EQUATIONS COUPLED WITH A CLASSICAL NUCLEAR DYNAMICS , 1999 .
[6] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .
[7] R. Werner,et al. Local dynamics of mean-field quantum systems , 1991 .
[8] A. Sznitman. Topics in propagation of chaos , 1991 .
[9] A. Sznitman. Équations de type de Boltzmann, spatialement homogènes , 1984 .
[10] R. Alicki,et al. Nonlinear quantum dynamical semigroups for many-body open systems , 1983 .
[11] H. Spohn. Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .
[12] G. Fano,et al. An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction , 1974 .
[13] F. Grünbaum,et al. Propagation of chaos for the Boltzmann equation , 1971 .
[14] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[15] M. Hp. A class of markov processes associated with nonlinear parabolic equations. , 1966 .
[16] H. McKean,et al. A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.
[17] Ludwig Boltzmann,et al. Lectures on Gas Theory , 1964 .
[18] J. Gillis,et al. Probability and Related Topics in Physical Sciences , 1960 .
[19] M. Kac. Foundations of Kinetic Theory , 1956 .
[20] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.