Large-Scale Liquid Simulation on Adaptive Hexahedral Grids

Regular grids are attractive for numerical fluid simulations because they give rise to efficient computational kernels. However, for simulating high resolution effects in complicated domains they are only of limited suitability due to memory constraints. In this paper we present a method for liquid simulation on an adaptive octree grid using a hexahedral finite element discretization, which reduces memory requirements by coarsening the elements in the interior of the liquid body. To impose free surface boundary conditions with second order accuracy, we incorporate a particular class of Nitsche methods enforcing the Dirichlet boundary conditions for the pressure in a variational sense. We then show how to construct a multigrid hierarchy from the adaptive octree grid, so that a time efficient geometric multigrid solver can be used. To improve solver convergence, we propose a special treatment of liquid boundaries via composite finite elements at coarser scales. We demonstrate the effectiveness of our method for liquid simulations that would require hundreds of millions of simulation elements in a non-adaptive regime.

[1]  Weigang Wang,et al.  Special Bilinear Quadrilateral Elements For Locally Refined Finite Element Grids , 2000, SIAM J. Sci. Comput..

[2]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[3]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[4]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[5]  M. Rumpf,et al.  Composite finite elements for 3D image based computing , 2009 .

[6]  Eftychios Sifakis,et al.  A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions , 2012, J. Comput. Phys..

[7]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[8]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. , 2012, IEEE transactions on visualization and computer graphics.

[9]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[10]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[11]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[12]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[13]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[14]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[15]  Matthias Müller-Fischer,et al.  Liquid simulation with mesh-based surface tracking , 2011, SIGGRAPH '11.

[16]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[17]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, SIGGRAPH 2011.

[18]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[19]  James F. O'Brien,et al.  A semi-Lagrangian contouring method for fluid simulation , 2005, TOGS.

[20]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[21]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[22]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[23]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[24]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[25]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[26]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[27]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[28]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[29]  Ronald Fedkiw,et al.  A new grid structure for domain extension , 2013, ACM Trans. Graph..

[30]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[31]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[32]  Ronald Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..

[33]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[34]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[35]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[36]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[37]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[38]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[39]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[40]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[41]  M. Gross,et al.  Deforming meshes that split and merge , 2009, SIGGRAPH 2009.

[42]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[43]  David R. Hill,et al.  OpenVDB: an open-source data structure and toolkit for high-resolution volumes , 2013, SIGGRAPH '13.

[44]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[45]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[46]  Matthias Müller,et al.  A Multigrid Fluid Pressure Solver Handling Separating Solid Boundary Conditions , 2011, IEEE Transactions on Visualization and Computer Graphics.

[47]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[48]  Phillip Colella,et al.  Author ' s personal copy A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions , 2011 .

[49]  Robert Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Transactions on Graphics.

[50]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[51]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[52]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[53]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.