Noise-induced bias in last principal component modeling of linear system
暂无分享,去创建一个
[1] Weihua Li,et al. Isolation enhanced principal component analysis , 1999 .
[2] Umberto Soverini,et al. The frisch scheme in dynamic system identification , 1990, Autom..
[3] M. Moonen,et al. QSVD approach to on- and off-line state-space identification , 1990 .
[4] Petre Stoica,et al. System identification from noisy measurements by using instrumental variables and subspace fitting , 1996 .
[5] Chun-Bo Feng,et al. Unbiased parameter estimation of linear systems in the presence of input and output noise , 1989 .
[6] Sabine Van Huffel,et al. Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models , 1989 .
[7] G. C. Tiao,et al. Modeling Multiple Time Series with Applications , 1981 .
[8] S. Joe Qin,et al. Consistent dynamic PCA based on errors-in-variables subspace identification , 2001 .
[9] K. Roeder,et al. Journal of the American Statistical Association: Comment , 2006 .
[10] Janos Gertler,et al. Principal Component Analysis and Parity Relations - A Strong Duality , 1997 .
[11] Torsten Söderström,et al. Identification of stochastic linear systems in presence of input noise , 1981, Autom..
[12] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[13] I. Jolliffe. Principal Component Analysis , 2002 .
[14] Venkataramanan Balakrishnan,et al. System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..
[15] Theodora Kourti,et al. Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .
[16] Christos Georgakis,et al. Disturbance detection and isolation by dynamic principal component analysis , 1995 .
[17] Janos Gertler,et al. Noise-induced bias in PCA modeling of linear system , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[18] Alison J. Burnham,et al. LATENT VARIABLE MULTIVARIATE REGRESSION MODELING , 1999 .
[19] W. H. Weinberg,et al. Combinatorial materials science: Paradigm shift in materials discovery and optimization , 1999 .
[20] Janos Gertler,et al. Fault detection and diagnosis in engineering systems , 1998 .
[21] Michel Verhaegen,et al. Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..
[22] Petre Stoica,et al. Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems , 1995, IEEE Trans. Signal Process..
[23] G. P. King,et al. Extracting qualitative dynamics from experimental data , 1986 .
[24] P. Holmes,et al. Suppression of bursting , 1997, Autom..
[25] W. Zheng,et al. Identification of a class of dynamic errors-in-variables models , 1992 .
[26] A. Negiz,et al. Statistical monitoring of multivariable dynamic processes with state-space models , 1997 .
[27] Seongkyu Yoon,et al. Statistical and causal model‐based approaches to fault detection and isolation , 2000 .