The role of ozone in the formation and structural evolution of graphene oxide obtained from nanographite

[1]  K. Zilm,et al.  Chemical shift referencing in MAS solid state NMR. , 2003, Journal of magnetic resonance.

[2]  J. Pedersen,et al.  Peroxymonosulfate Rapidly Inactivates the Disease-Associated Prion Protein. , 2016, Environmental science & technology.

[3]  A. Shilov,et al.  Formation of ozone during the reduction of potassium permanganate in sulfuric acid solutions , 2005 .

[4]  D. Troya,et al.  A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions. , 2014, Physical chemistry chemical physics : PCCP.

[5]  E. Samulski,et al.  Synthesis of water soluble graphene. , 2008, Nano letters.

[6]  Lai-Peng Ma,et al.  Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. , 2013, ACS nano.

[7]  Dongmin Chen,et al.  Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide , 2008, Science.

[8]  Wei Gao,et al.  Ozonated graphene oxide film as a proton-exchange membrane. , 2014, Angewandte Chemie.

[9]  A. I. Lapshin,et al.  High-temperature IR-spectroscopic investigation of the structural and kinetic characteristics of sulfate formation by thermal decomposition of potassium persulfate , 1976 .

[10]  Huiliang Wang,et al.  Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. , 2012, ACS nano.

[11]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[12]  A. Dilks The identification of peroxy‐features at polymer surfaces by ESCA , 1981 .

[13]  D. Xiao,et al.  The role of ozone in the ozonation process of graphene oxide: oxidation or decomposition? , 2014 .

[14]  M. Tomasik,et al.  Ozone oxidation of surface-adsorbed polycyclic aromatic hydrocarbons: role of PAH-surface interaction. , 2010, Journal of the American Chemical Society.

[15]  Y. Uraoka,et al.  Reversible Oxidation of Graphene Through Ultraviolet/Ozone Treatment and Its Nonthermal Reduction through Ultraviolet Irradiation , 2014 .

[16]  A. Hirsch,et al.  Sulfur species in graphene oxide. , 2013, Chemistry.

[17]  G. López,et al.  XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups , 1991 .

[18]  J. Tour,et al.  Pristine graphite oxide. , 2012, Journal of the American Chemical Society.

[19]  T. Kawai,et al.  Fourier Transform Infrared Study on the Phase Transitions of a Sodium Dodecyl Sulfate-Water System , 1983 .

[20]  Y. Chabal,et al.  Unusual infrared-absorption mechanism in thermally reduced graphene oxide. , 2010, Nature materials.

[21]  James M Tour,et al.  Mechanism of graphene oxide formation. , 2014, ACS nano.

[22]  Zhiwei Feng,et al.  Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations. , 2014, ACS applied materials & interfaces.

[23]  G. Beamson,et al.  Effect of Crystallinity on the XPS Spectrum of Poly(Ethylene Terephthalate) , 1994 .

[24]  H. Siegbahn,et al.  Molecular spectroscopy by means of ESCA: V. Boron compounds , 1972 .

[25]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[26]  J. Klinowski,et al.  13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives , 1997 .

[27]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[28]  Jacek Klinowski,et al.  A new structural model for graphite oxide , 1998 .

[29]  D. Briggs,et al.  High resolution XPS of organic polymers , 1992 .

[30]  James M Tour,et al.  Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra. , 2012, ACS nano.

[31]  M. Pumera,et al.  Oxidation debris in graphene oxide is responsible for its inherent electroactivity. , 2014, ACS nano.

[32]  Siemen's Ozonizer Ozone , 1868, Reactions Weekly.

[33]  K. Tu,et al.  Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. , 2010, ACS nano.

[34]  R. Linder,et al.  Advances in charge neutralization for XPS measurements of nonconducting materials , 1988 .

[35]  Gaetano Granozzi,et al.  Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films , 2009 .

[36]  G. Ghosh,et al.  Fluorine end-capped optical fibers for photosensitizer release and singlet oxygen production. , 2012, The Journal of organic chemistry.

[37]  C. Kumar,et al.  Biological relevance of oxidative debris present in as-prepared graphene oxide. , 2015, RSC advances.

[38]  Yunfei Bai,et al.  Response of microRNAs to in vitro treatment with graphene oxide. , 2014, ACS nano.

[39]  Ruiming,et al.  Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. , 2015, Small.

[40]  G. Tourillon,et al.  Adsorption of some substituted ethylene molecules on Pt(111) at 95 K Part 1: NEXAFS, XPS and UPS studies , 1996 .

[41]  Hyunyong Kim,et al.  Molecular vibrational spectra of potassium peroxymonosulfate, KHSO5 and KHSO5 · H2O, and of the aqueous peroxymonosulfate ion☆ , 1985 .

[42]  R. Manne,et al.  Molecular Spectroscopy by Means of ESCA III. Carbon compounds , 1970 .

[43]  Haitao Liu,et al.  Availability of the basal planes of graphene oxide determines whether it is antibacterial. , 2014, ACS applied materials & interfaces.

[44]  Zhaobo Wang,et al.  Ni-Fe-Co-P coatings on coiled carbon nanofibers , 2005 .

[45]  G. Shi,et al.  Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups , 2015, Chemical science.

[46]  A. Greer,et al.  Encapsulation and convex-face thiozonolysis of triatomic sulfur (S(3)) with carbon nanotubes. , 2012, Journal of physical organic chemistry.

[47]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[48]  V. Gorshenev,et al.  Carbon Nanostructure Reactivity: Reactions of Graphite Powders with Ozone , 2007 .

[49]  D. Drobne,et al.  Comparative study of serum protein binding to three different carbon-based nanomaterials , 2015 .

[50]  Xiang-Rong Yu,et al.  Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source , 1990 .

[51]  Wei Gao,et al.  New insights into the structure and reduction of graphite oxide. , 2009, Nature chemistry.

[52]  P. Archawa-umroong,et al.  [Direct observation]. , 1975, Thai journal of nursing.

[53]  Steven O. Smith,et al.  Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR , 1994 .

[54]  J. Brinen,et al.  XPS and SIMS studies of biodegradable suture materials , 1991 .

[55]  Baoliang Chen,et al.  Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. , 2016, Environmental science & technology.

[56]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[57]  H. Hussain,et al.  Journey describing applications of oxone in synthetic chemistry. , 2013, Chemical reviews.

[58]  R. Mendelsohn,et al.  Graphene: Microwave Enabled One‐Pot, One‐Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications (Small 27/2015) , 2015 .

[59]  I. Dékány,et al.  DRIFT study of deuterium-exchanged graphite oxide , 2005 .

[60]  Jisoo Park,et al.  Hidden Second Oxidation Step of Hummers Method , 2016 .

[61]  Robert M. Wallace,et al.  The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy , 2011 .