Estimation of Heat Content and Mean Temperature of Different Ocean Layers

Oceans are reservoirs of heat energy represented by the heat content or the mean temperature, and are the source of energy for the atmospheric processes. Which process of the atmosphere interacts with the energy of which layer of the ocean is not clear, primarily, because of the nonavailability of oceanic heat energy of different layers on a required temporal and spatial scales. Realizing this requirement, we compute the ocean heat content (OHC) and the ocean mean temperature (OMT) from surface to 50, 100, 150, 200, 300, 500, 700 m and upto 26 °C isotherm depth. Thus, we computed altogether 16 variables from satellite observations of sea surface height anomaly (SSHA), sea surface temperature (SST), and the climatological values of the above 16 variables through an artificial neural network (ANN). The model is developed using 11472 in situ and satellite collocated observations and is validated using 2479 independent values that are not used for developing the model. These estimations have a strong Pearson correlation coefficient, r, of more than 0.90 (at 99% confidence level) between the estimated and in situ values. These parameters are provided on near real time daily basis at a spatial resolution of 0.25° at the Bhuvan website of National Remote Sensing Centre, Indian Space Research Organisation, which can be downloaded by a researcher for further ocean-atmosphere interaction investigations.

[1]  M. M. Ali,et al.  Estimation of sonic layer depth from surface parameters , 2007 .

[2]  S. Levitus,et al.  Warming of the World Ocean , 2000 .

[3]  Witold F. Krajewski,et al.  Rainfall forecasting in space and time using a neural network , 1992 .

[4]  K. Schuckmann,et al.  How well can we derive Global Ocean Indicators from Argo data , 2011 .

[5]  Keith W. Dixon,et al.  Anthropogenic Warming of Earth's Climate System , 2001, Science.

[6]  Eric Rignot,et al.  Revisiting the Earth's sea-level and energy budgets from 1961 to 2008 , 2011 .

[7]  Gustavo Goni,et al.  Effects of a Warm Oceanic Feature on Hurricane Opal , 2000 .

[8]  J. Willis,et al.  Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability , 2003 .

[9]  D. Stammer Response of the global ocean to Greenland and Antarctic ice melting , 2008 .

[10]  M. M. Ali,et al.  Near-Real-Time Availability of Ocean Heat Content Over the North Indian Ocean , 2015, IEEE Geoscience and Remote Sensing Letters.

[11]  Timothy P. Boyer,et al.  World Ocean Database 2013. , 2013 .

[12]  Edward Hanna,et al.  Ice-sheet mass balance and climate change , 2013, Nature.

[13]  J. Willis,et al.  Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales , 2004 .

[14]  Sarika Jain,et al.  Effects of eddies on Bay of Bengal cyclone intensity , 2007 .

[15]  G. V. Reddy,et al.  A new atlas of temperature and salinity for the North Indian Ocean , 2012, Journal of Earth System Science.

[16]  Chang-Kou Tai,et al.  Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry , 1995 .

[17]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[18]  M. M. Ali,et al.  A Neural Network Approach to Improve the Vertical Resolution of Atmospheric Temperature Profiles From Geostationary Satellites , 2013, IEEE Geoscience and Remote Sensing Letters.

[19]  Vladimir M. Krasnopolsky,et al.  Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water , 2005 .

[20]  Helmut Schiller,et al.  Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements , 2003, Neural Networks.

[21]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[22]  M. M. Ali,et al.  Estimation of Sound Speed Profiles Using Artificial Neural Networks , 2006, IEEE Geoscience and Remote Sensing Letters.

[23]  M. M. Ali,et al.  Estimation of mixed-layer depth from surface parameters , 2006 .

[24]  S. Levitus,et al.  Thermosteric sea level rise, 1955–2003 , 2005 .

[25]  M. M. Ali,et al.  Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach , 2004 .

[26]  Kimio Hanawa,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[27]  Sujit Basu,et al.  Satellite-derived heat content in the tropical Indian Ocean , 2011 .

[28]  M. M. Ali,et al.  A Neural Network Approach to Estimate Tropical Cyclone Heat Potential in the Indian Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[29]  Peter J. Gleckler,et al.  Improved estimates of upper-ocean warming and multi-decadal sea-level rise , 2008, Nature.

[30]  Douglas Volgenau Hurricane Heat Potential of the Gulf of Mexico , 1972 .

[31]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[32]  V. Krasnopolsky,et al.  A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager , 1995 .