Development of monitoring applications for refrigerated perishable goods transportation

Perishable food products are at risk of suffering various damages along the cold chain. The parties involved should control and monitor the conditions of goods in order to ensure their quality for consumers and to comply with all legal requirements. Among environmental parameters during transport, temperature is the most important in prolonging the shelf life of the products. The aim of this PhD thesis is to improve the control during transport, storage and distribution through the development of monitoring applications. The integration of emerging information technologies can now provide real-time status updates. As a first approach, a deep review of the state of the art has been done. That includes scientific literature, websites, books, articles, etc. in different areas. After the revision various key technologies were identified: RFID, WSN, chemical sensing and fieldbus networks. The experimental work about RFID has been focused to the adaptation of miniaturized semi-passive temperature loggers for monitoring refrigerated shipments by truck. This study included an analysis of the amount of local deviations, the detection of temperature gradients, and the estimation of the minimum number of sensors that are necessary for reliable monitoring inside a truck or container. These devices are useful tools for improving the transport chain and detecting weaknesses by identifying specific problem areas where corrective actions are needed. In a first step, the RFID tags were tested by studying the temperature distribution in a pallet. Then, 15 shipments from a wholesale company in Germany in compartmented trucks were monitored, covering different temperature range conditions. Also, the potential of wireless sensor technology for monitoring fruit storage and transport conditions has been explored, focusing on ZigBee technology with special regard to two different commercial modules. The main contributions in this area relate to the analysis of battery life under refrigerated conditions and the evaluation of the reliability of communications and measurements. Psychrometric equations were used for quick assessment of changes in the absolute water content of air, allowing estimation of future water loss, and detection of condensation on the product. In the development of chemical sensing technologies, Linear Variable Filter-Infrared spectrometers (LVF-IR) for the detection of ethylene, ethanol and CO2 were tested. Reference techniques such as Gas Chromatograph (GC) and commercial ethylene and ethanol sensors are used for comparison. The results prove that commercial available sensors are not able to distinguish between ethylene and ethanol, while LVF-IR is able to segregate between both. A few fieldbus systems have evolved into de facto standards. Of these, CAN (controller area network)-based systems are the basis for road vehicle systems (SAE J1939 and ISO 11992) and for ships (NMEA 2000). The use of standardized CAN technology can improve monitoring transports, ensuring the inter-operability of the system. The specifications needed in a CANbus device compatible with SAEJ1939 for monitoring international fruit transport were defined. Main innovation is that the system has to manage multidistributed information like temperature, air flow, moisture, condensation and concentration of volatile compounds, allow intercommunication with further accessible stations, and perform intelligent control of the cooling system. Finally, the information from monitoring was used in the development of a software prototype based on web service technologies that offers new features in traceability management. Using web-based systems for data processing, storage and transfer offers a very flexible way of information access, networking and usability. The idea was to integrate information from precision farming together with the information registered during the transport and delivery from intelligent transport systems into a single traceability system. The system enables detection of food safety risks, like for example breaks in the cold chain, triggering alerts about temperature abuse. Thus, this traceability system represents an effective way to increase food safety and quality, build confidence and commitment to and by consumers. Resumen Supervisar el almacenamiento, transporte y distribucion de los productos agroalimentarios perecederos es fundamental para garantizar su calidad de cara al consumidor final. Estos productos, tales como frutas, verduras, carne o pescado, pueden sufrir danos y perdida de calidad debido a descontroles durante su logistica. Dentro de los distintos factores que afectan a la vida util de los productos, la temperatura es el mas importante de ellos. El proposito de esta tesis doctoral es mejorar el control y la supervision durante la cadena de frio, a traves del desarrollo de sistemas de monitorizacion. Para ello se han utilizado diversas tecnologias emergentes, de reciente aparicion. Como primer paso, se hizo una revision del estado del arte. En este proceso se tuvieron en cuenta revistas cientificas, normas, patentes, webs, libros, articulos de divulgacion y otras publicaciones de multiples disciplinas relacionadas con el tema de la tesis. Despues de la revision se identificaron varias tecnologias clave para el desarrollo de sistemas de monitorizacion. Entre ellas destacan las redes inalambricas de sensores (WSN) y los sistemas de identificacion por radio frecuencia (RFID). El trabajo experimental sobre RFID se ha centrado en la aplicacion de dispositivos semi-pasivos que incorporan sensores de temperatura de tal manera que permiten supervisar transportes frigorificos. Este estudio incluyo el analisis de de las desviaciones respecto de la temperatura de consigna, la deteccion de gradientes de temperatura y la estimacion del numero minimo de sensores que son necesarios para una monitorizacion fiable en un camiones frigorificos. Los dispositivos utilizados han sido utiles en la mejora de la logistica de la cadena de frio, detectando puntos debiles, mediante la identificacion de areas problematicas donde es necesario realizar acciones correctivas. Como primer paso se realizo un estudio comparativo de tres sistemas RFID, esto permitio seleccionar el que tenia las mejores prestaciones, para a continuacion instalar 48 de estos dispositivos en un pallet, para estudiar la distribucion de temperaturas. Finalmente, se monitorizaron 15 camiones frigorificos compartimentados, a diferentes temperaturas de consigna. Por otro lado, se exploro el potencial de las redes inalambricas de sensores para monitorizar almacenes de frutas y condiciones de transporte. Los experimentos se centraron en la tecnologia ZigBee, en concreto en las prestaciones de dos modulos. La mayor contribucion en esta area fue el analisis de la duracion de las baterias bajo condiciones frigorificas y la evaluacion de la fiabilidad de las comunicaciones y de las medidas. La aplicacion del modelo psicrometrico de la ASABE permitio la deteccion inmediata de los cambios en contenido del agua del ambiente, estimar la condensacion sobre la superficie del producto y las perdidas de agua del mismo. Los apendices de la tesis recogen una serie de estudios complementarios como son la sensorica de gases, las redes de control mediante buses de campo y los sistemas de trazabilidad. En el ambito de la sensorica de gases se estudiaron espectrofotometros de infrarrojos con filtros lineales variables (LVF-IR), especificos para la deteccion de etileno, etanol y CO2. Como tecnicas de referencia se utilizo la cromatografia de gases y sensores comerciales de etileno y etanol. El resultado probo la especificidad de los sensores LVF-IR para la segregacion entre etileno y etanol, en contraposicion con los sensores comerciales. En el ambito de las redes de control mediante buses de campo, en los ultimos anos una serie de sistemas se han constituido en los estandares de facto. Entre ellos, la tecnologia CAN (redes de control de area), suponen la base de las lineas de comunicacion en vehiculos, mediante los protocolos SAE J1939 e ISO 11992, y para barcos, a traves del protocolo NMEA 2000. El uso de los estandares CAN puede mejor la monitorizacion de los transportes, ya que permite la interoperabilidad del sistema en los distintos ambitos de transporte. La principal innovacion es que el sistema debe manejar informacion multidistribuida como la temperatura, el flujo de aire, humedad, condensacion y concentracion de compuestos volatiles, permitiendo la intercomunicacion con centros de supervision remotos, que posibiliten el control a distancia de la unidad. Finalmente, se desarrollo un prototipo de software para el control de la trazabilidad, basado en la tecnologia de servicios web. Dicho prototipo ha permitido integrar, en un mismo sistema de trazabilidad, la informacion procedente de la agricultura de precision junto con la informacion registrada durante la supervision del transporte y distribucion. El sistema desarrollado permite la deteccion de anomalias, como por ejemplo la ruptura de la cadena de frio, detectando descontroles en la temperatura. De esta manera, este sistema de trazabilidad representa una efectiva forma de incrementar la seguridad y la calidad, generando confianza para y por lo consumidores

[1]  Douwe-Frits Broens,et al.  Food safety and transparency in food chains and networks Relationships and challenges , 2004 .

[2]  Matthias Rothmund,et al.  Agricultural Process Data Service (APDS) , 2006 .

[3]  F. P. Scheer,et al.  Optimising supply chain using traceability systems , 2005 .

[4]  Jeffrey K. Brecht,et al.  Brief deviations from set point temperatures during normal airport handling operations negatively affect the quality of papaya (Carica papaya) fruit , 2006 .

[5]  A. Murari,et al.  Wireless communication using detectors located inside vacuum chambers , 2003 .

[7]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[8]  Michael O'Brien,et al.  Vibrating Characteristics of Fruits as Related to In-Transit Injury , 1965 .

[9]  Pilar Barreiro,et al.  Thermal study of a transport container , 2007 .

[10]  Remko I. van Hoek,et al.  Using information technology to leverage transport and logistics service operations in the supply chain: an empirical assessment of the interrelation between technology and operations management , 2002, Int. J. Inf. Technol. Manag..

[11]  Carles Cané,et al.  Towards a micro-system for monitoring ethylene in warehouses , 2005 .

[12]  B. H. Ashby,et al.  Simulated In-Transit Vibration Damage to Packaged Fresh Market Grapes and Strawberries , 1992 .

[13]  Gianluca Cena,et al.  Advances in automotive digital communications , 2005, Comput. Stand. Interfaces.

[14]  Heidi Anne Smartt,et al.  WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS) , 2000 .

[15]  P. Barreiro,et al.  Monitoring the intermodal , refrigerated transport of fruit using sensor networks , 2007 .

[16]  Carlos Mauricio S. Figueiredo,et al.  Model to integration of RFID into Wireless Sensor Network for Tracking and Monitoring Animals , 2008, 2008 11th IEEE International Conference on Computational Science and Engineering.

[17]  Z. Hanzalek,et al.  Use of the fieldbus systems in academic setting , 1998, Proceedings Real-Time Systems Education III.

[18]  Jan D. Gehrke,et al.  Wireless Sensor Networks as an Enabler for Cooperating Logistic Processes , 2006 .

[19]  Ian Jenson,et al.  Combining microbial growth models with near real-time temperature monitoring technologies to estimate the shelf life and safety of foods during processing and distribution , 2006 .

[20]  Michael Bell,et al.  Service-Oriented Modeling: Service Analysis, Design, and Architecture , 2008 .

[21]  E. L. Harder,et al.  The Institute of Electrical and Electronics Engineers, Inc. , 2019, 2019 IEEE International Conference on Software Architecture Companion (ICSA-C).

[22]  D. C. Twist,et al.  The impact of radio frequency identification on supply chain facilities , 2005 .

[23]  R. J. Craddock,et al.  Sensor fusion for smart containers , 2005 .

[24]  Adriano Guarnieri,et al.  PH—Postharvest Technology: Damage to Loquats by Vibration-simulating Intra-state Transport , 2002 .

[25]  Klaus Finkenzeller,et al.  RFID Handbook: Radio-Frequency Identification Fundamentals and Applications , 2000 .

[26]  골란 엘리,et al.  Smart container monitoring system , 2006 .

[27]  Hermann Auernhammer The Role of Mechatronics in Crop Product Traceability , 2000 .

[28]  Ahmed Shaikh,et al.  Service-Oriented Architecture and Web Services , 2009 .

[29]  M. Li,et al.  Optical chlorophyll sensing system for banana ripening , 1997 .

[30]  Thomas Bak,et al.  ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees , 2008 .

[31]  L. Tijskens,et al.  A generic model for keeping quality of vegetable produce during storage and distribution , 1996 .

[32]  Diane K. Michelson,et al.  Applied Statistics for Engineers and Scientists , 2001, Technometrics.

[33]  Dharma P. Agrawal,et al.  An enhanced and energy efficient communication architecture for Bluetooth wireless PANs , 2005, Ad Hoc Networks.

[34]  Denis Flick,et al.  Analysis of use of insulating pallet covers for shipping heat-sensitive foodstuffs in ambient conditions , 2002 .

[35]  Mauro Gamberi,et al.  Traceability of food products: General framework and experimental evidence , 2007 .

[36]  Eric W.T. Ngai,et al.  RFID: Technology, applications, and impact on business operations , 2008 .

[37]  K. J. Ellis,et al.  Cattle health monitoring using wireless sensor networks , 2004 .

[38]  Inger Gustafsson,et al.  Information for transparency in transport chains , 2004 .

[39]  Francesco Marcelloni,et al.  Patterns and technologies for enabling supply chain traceability through collaborative e-business , 2008, Inf. Softw. Technol..

[40]  Edna Pesis,et al.  The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration , 2005 .

[41]  Karl Henrik Johansson,et al.  Vehicle Applications of Controller Area Network , 2005, Handbook of Networked and Embedded Control Systems.

[42]  Carlos Serôdio,et al.  A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture , 2008 .

[43]  Y. Sarig TRACEABILITY of FOOD PRODUCTS , 2003 .

[44]  H. Søgaard,et al.  ZigBee-based wireless sensor networks for monitoring animal presence and pasture time in a strip of new grass , 2008 .

[45]  E. J. Timm,et al.  APPLE DAMAGE AND COMPRESSIVE FORCES IN BULK BINS DURING ORCHARD TRANSPORT , 1998 .

[46]  Helen Punt,et al.  Temperature variances in a 12 m integral reefer container carrying plums under a dual temperature shipping regime , 2005 .

[47]  Daniele Miorandi,et al.  A wireless extension of Profibus DP based on the Bluetooth radio system , 2005, Ad Hoc Networks.

[48]  Stefan Baumann,et al.  Global navigation satellite systems. , 2000 .

[49]  Mikael Gunnarsson Truck-Trailer Wireless Connections , 2001 .

[50]  J. Adams,et al.  Meet the ZigBee Standard , 2003 .

[51]  A. H. Ipema,et al.  Pilot study to monitor body temperature of dairy cows with a rumen bolus , 2008 .

[52]  N. D. Amos,et al.  TEMPERATURE VARIABILITY DURING SHIPMENT OF FRESH PRODUCE , 2003 .

[53]  Naveen Erasala,et al.  Bluetooth technology: a strategic analysis of its role in global 3G wireless communication era , 2002, Comput. Stand. Interfaces.

[54]  Herbert Miehsler,et al.  EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT , 1983 .

[55]  J. Brecht,et al.  QUALITY OF STRAWBERRIES AS AFFECTED BY TEMPERATURE ABUSE DURING GROUND, IN-FLIGHT AND RETAIL HANDLING OPERATIONS , 2003 .

[56]  Nathan Ickes,et al.  Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks , 2001, MobiCom '01.

[57]  Rainer Laur,et al.  Energy-efficient topology control for wireless sensor networks using online battery monitoring , 2007 .

[58]  Pilar Barreiro,et al.  Performance of ZigBee-Based wireless sensor nodes for real-time monitoring of fruit logistics , 2008 .

[59]  David Hillier,et al.  Radio frequency identification in the UK: opportunities and challenges , 2004 .

[60]  Michael O'Brien,et al.  An In-Transit Vibration Simulator for Fruit-Handling Studies , 1969 .

[61]  Carol Mitchell,et al.  WSDOT INTERMODAL DATA LINKAGES FREIGHT ITS OPERATIONAL TEST EVALUATION FINAL REPORT PART 1: ELECTRONIC CONTAINER SEALS EVALUATION , 2002 .

[62]  Walter Lang,et al.  Semi-passive RFID and beyond: steps towards automated quality tracing in the food chain , 2007, Int. J. Radio Freq. Identif. Technol. Appl..

[63]  D J Tanner,et al.  Modelling product quality changes as a result of temperature variability in shipping systems. , 2003 .

[64]  Brigitte Petersen,et al.  Generic model for the prediction of remaining shelf life in support of cold chain management in pork and poultry supply chains , 2008 .

[65]  Kenneth Preiss,et al.  Smart Business Networks , 2004 .

[66]  Pilar Barreiro,et al.  MODELING PSYCHROMETRIC DATA IN REAL-TIME FRUIT LOGISTICS MONITORING , 2008 .

[67]  F. W. Wheaton,et al.  Potato Shatter Bruising During Laboratory Handling and Transport Simulation , 1986 .

[68]  Rony Geers,et al.  TETRAD: an on-line telematic surveillance system for animal transports , 1998 .

[69]  Yoav Sarig Potential applications of artificial olfactory sensing for quality evaluation of fresh produce. , 2000 .

[70]  Rainer Laur,et al.  Intelligent Containers and Sensor Networks Approaches to apply Autonomous Cooperation on Systems with limited Resources , 2007 .

[71]  P. Fuhr,et al.  Mesh Radio Network Performance in Cargo Containers , 2005 .

[72]  Paloma Díaz,et al.  Towards efficient web engineering approaches through flexible process models , 2007, J. Syst. Softw..

[73]  Stefan Tai,et al.  The next step in Web services , 2003, CACM.

[74]  Mohamed Saafi,et al.  Measuring soil temperature and moisture using wireless MEMS sensors , 2008 .

[75]  G. A. Giannopoulos,et al.  The application of information and communication technologies in transport , 2004, Eur. J. Oper. Res..

[76]  M. Attaran RFID: an enabler of supply chain operations , 2007 .

[77]  David C. Yen,et al.  Bluetooth technology: an exploratory study of the analysis and implementation frameworks , 2004, Comput. Stand. Interfaces.

[78]  Andreas Krabs,et al.  Automatic identification in packaging — radio frequency identification in multiway systems , 1999 .

[79]  Rolf Kraemer,et al.  Bluetooth based wireless Internet applications for indoor hot spots: experience of a successful experiment during CeBIT 2001 , 2003, Comput. Networks.

[80]  K. Sangani RFID sees all , 2004 .

[81]  E. J. Timm,et al.  RELATION OF INDIVIDUAL FORCES ON APPLES AND BRUISING DURING ORCHARD TRANSPORT OF BULK BINS , 2001 .

[82]  Kensall D. Wise,et al.  Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage , 2007 .

[83]  R. F. Testin,et al.  PEACH BRUISING: SUSCEPTIBILITY TO IMPACT, VIBRATION, AND COMPRESSION ABUSE , 1991 .

[84]  Iver Thysen,et al.  Agriculture in the Information Society. , 2000 .

[85]  Jean-Pierre Emond,et al.  Application of RFID technologies in the temperature mapping of the pineapple supply chain , 2008 .

[86]  Rony Geers,et al.  Information monitoring system for surveillance of animal welfare during transport. , 2003 .

[87]  Lei Zhang,et al.  Integration of RFID into Wireless Sensor Networks: Architectures, Opportunities and Challenging Problems , 2006, 2006 Fifth International Conference on Grid and Cooperative Computing Workshops.

[88]  Takao Shimomura Visual design and programming for Web applications , 2005, J. Vis. Lang. Comput..

[89]  Takeo Shiina,et al.  Effects of cultivation, transportation and distribution methods on the life cycle inventory (LCI) of fresh tomato , 2006 .

[90]  Richard Beckwith,et al.  Report from the field: results from an agricultural wireless sensor network , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[91]  Frank Leymann,et al.  Web services and business process management , 2002, IBM Syst. J..

[92]  Edgar H. Callaway,et al.  Wireless Sensor Networks: Architectures and Protocols , 2003 .

[93]  Daniel M. Dobkin,et al.  A Radio-Oriented Introduction to RFID—Protocols, Tags and Applications , 2005 .

[94]  Xiaojun Wang,et al.  Value Added on Food Traceability: a Supply Chain Management Approach , 2006, 2006 IEEE International Conference on Service Operations and Logistics, and Informatics.

[95]  T. C. Edwin Cheng,et al.  Mobile commerce integrated with RFID technology in a container depot , 2007, Decis. Support Syst..

[96]  Basheer M. Khumawala,et al.  Radio frequency identification technology: applications, technical challenges and strategies , 2006 .

[97]  Ning Wang,et al.  Review: Wireless sensors in agriculture and food industry-Recent development and future perspective , 2006 .

[98]  O. Chutatape A design of a large scale telemetry network for the monitoring of remote refrigerated containers , 1989, Fourth IEEE Region 10 International Conference TENCON.

[99]  M. Kärkkäinen,et al.  Increasing efficiency in the supply chain for short shelf life goods using RFID tagging , 2003 .

[100]  Michel Pelletier,et al.  The Zope Book , 2001 .

[101]  Rebecca Angeles,et al.  Rfid Technologies: Supply-Chain Applications and Implementation Issues , 2004, Inf. Syst. Manag..

[102]  D. Maxwell,et al.  Wireless Temperature Monitoring in Remote Systems Analog , 2002 .

[103]  Anthony Furness,et al.  Improving traceability in food processing and distribution. , 2006 .

[104]  Mohamed Saafi,et al.  Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors , 2008 .

[105]  Walter Lang,et al.  Applying autonomous sensor systems in logistics—Combining sensor networks, RFIDs and software agents , 2006 .

[106]  Eduardo Tovar,et al.  Supporting real-time communications with standard factory-floor networks , 1999 .

[107]  Nilufar Baghaei,et al.  Review of quality of service performance in wireless LANs and 3G multimedia application services , 2004, Comput. Commun..

[108]  Y. Liu,et al.  Wireless intelligent sensor networks for refrigerated vehicle , 2004, Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710).

[109]  Stefano Chessa,et al.  Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards , 2007, Comput. Commun..

[110]  J. J. Trip,et al.  Is a new applied transportation research field emerging?--A review of intermodal rail-truck freight transport literature , 2004 .

[111]  Vincenzo Guidi,et al.  Monitoring of ethylene for agro-alimentary applications and compensation of humidity effects , 2004 .

[112]  J. Moureha,et al.  Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets , 2004 .

[113]  Maohua Wang,et al.  Wireless sensors in agriculture and food industry — Recent development and future perspective , 2005 .