Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

According to the "no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the "order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

[1]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[2]  E. Sjoqvist,et al.  Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates , 2008, 0812.1725.

[3]  Wang Yao,et al.  Berry phase effect on exciton transport and Bose Einstein condensate , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[4]  Hui Zhai,et al.  Spin-orbit coupled spinor Bose-Einstein condensates. , 2010, Physical review letters.

[5]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[6]  V. Galitski,et al.  Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions. , 2007, Physical Review Letters.

[7]  A. Gossard,et al.  Macroscopically ordered state in an exciton system , 2002, Nature.

[8]  Wolfe,et al.  Evidence for Bose-Einstein condensation of excitons in Cu2O. , 1990, Physical review. B, Condensed matter.

[9]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[10]  W. Phillips,et al.  Bose-Einstein condensate in a uniform light-induced vector potential. , 2008, Physical review letters.

[11]  M. Sahin,et al.  Excitonic condensation under spin-orbit coupling and BEC-BCS crossover. , 2007, Physical review letters.

[12]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[13]  L. You,et al.  Emergent patterns in a spin-orbit-coupled spin-2 Bose-Einstein condensate , 2011, 1103.6074.

[14]  F. Zhou Quantum Spin Nematic States in Bose–Einstein Condensates , 2001, cond-mat/0108473.

[15]  J. Ruseckas,et al.  Double and negative reflection of cold atoms in non-Abelian gauge potentials. , 2008, Physical review letters.

[16]  I. Spielman Raman processes and effective gauge potentials , 2009, 0905.2436.

[17]  L. Butov,et al.  Cold exciton gases in coupled quantum well structures , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Shou-Cheng Zhang,et al.  QUINTET PAIRING AND NON-ABELIAN VORTEX STRING IN SPIN-3/2 COLD ATOMIC SYSTEMS , 2005, cond-mat/0512602.

[19]  V. Galitski,et al.  Spin-orbit coupled Bose-Einstein condensates , 2007, 0712.2256.