An ALE pairwise-relaxing meshless method for compressible flows

Abstract In this paper, we present a pairwise-relaxing meshless (PRM) method for solving the Euler equations of compressible flows within the Arbitrary Lagrangian Eulerian (ALE) framework. Derived from the moving particle semi-implicit (MPS) method and the finite volume particle (FVP) method, the PRM approximates the derivatives from the value defined at the midpoint of each interacting particle pairs through a kernel-based formulation. Pairwise-relaxing constants are introduced to the kernels to provide degree of freedom to enforce the Taylor-series consistency condition while mass, momentum and energy are conserved exactly. An upwind high-order reconstruction scheme via a corrective procedure and variable cut-off radius is also developed for this PRM method. The HLLC approximate Riemann solver is adopted to solve Riemann problem. One and two-dimensional numerical tests are presented to demonstrate the performance of the PRM method.

[1]  Michael Dumbser,et al.  A new class of Moving-Least-Squares WENO-SPH schemes , 2014, J. Comput. Phys..

[2]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[3]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[4]  Hitoshi Gotoh,et al.  Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering , 2016 .

[5]  Wing Kam Liu,et al.  Multiple‐scale reproducing kernel particle methods for large deformation problems , 1998 .

[6]  Shu-ichiro Inutsuka Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver , 2002 .

[7]  N. Balakrishnan,et al.  Wall boundary conditions for inviscid compressible flows on unstructured meshes , 1998 .

[8]  Seiichi Koshizuka,et al.  Stable multiphase moving particle semi-implicit method for incompressible interfacial flow , 2017 .

[9]  K. Morita,et al.  An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[11]  Gary A. Dilts,et al.  Moving least‐squares particle hydrodynamics II: conservation and boundaries , 2000 .

[12]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[13]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2011, SIAM J. Sci. Comput..

[14]  Shuai Zhang,et al.  Accuracy and stability enhancements in the incompressible finite-volume-particle method for multiphase flow simulations , 2018, Comput. Phys. Commun..

[15]  J. Monaghan SPH without a Tensile Instability , 2000 .

[16]  Koji Morita,et al.  Enhancement of the accuracy of the finite volume particle method for the simulation of incompressible flows , 2017 .

[17]  J. Michael Owen,et al.  CRKSPH - A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme , 2016, J. Comput. Phys..

[18]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[19]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[20]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[21]  Kenji Fukuda,et al.  A new algorithm for surface tension model in moving particle methods , 2007 .

[22]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[23]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[24]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[25]  Ken Badcock,et al.  An implicit meshless method for application in computational fluid dynamics , 2013 .

[26]  Jon Reisner,et al.  A space-time smooth artificial viscosity method for nonlinear conservation laws , 2012, J. Comput. Phys..

[27]  Rainald Löhner,et al.  On the computation of multi-material flows using ALE formulation , 2004 .

[28]  Jean-Paul Vila,et al.  ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS , 1999 .

[29]  Stéphane Clain,et al.  High-accurate SPH method with Multidimensional Optimal Order Detection limiting , 2016 .

[30]  Koji Morita,et al.  Numerical simulation of gas–liquid–solid three-phase flow using particle methods , 2015 .

[31]  Yu Liu,et al.  New adaptive artificial viscosity method for hyperbolic systems of conservation laws , 2012, J. Comput. Phys..

[32]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[33]  Chi-Wang Shu,et al.  Positivity-preserving Lagrangian scheme for multi-material compressible flow , 2014, J. Comput. Phys..

[34]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[35]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[36]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[37]  Bachir Ben Moussa,et al.  On the Convergence of SPH Method for Scalar Conservation Laws with Boundary Conditions , 2006 .

[38]  Seiichi Koshizuka,et al.  Least squares moving particle semi-implicit method , 2014, Computational Particle Mechanics.

[39]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..

[40]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[41]  Antony Jameson,et al.  Meshless methods for computational fluid dynamics , 2009 .