Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems
暂无分享,去创建一个
[1] Santos B. Yuste,et al. An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .
[2] Kassem Mustapha,et al. A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..
[3] W. McLean. Regularity of solutions to a time-fractional diffusion equation , 2010 .
[4] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[5] Mingrong Cui. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.
[6] Zhoushun Zheng,et al. Discontinuous Galerkin Method for Time Fractional Diffusion Equation , 2013 .
[7] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[8] Kassem Mustapha,et al. A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.
[9] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .
[10] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[11] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[12] Robert Michael Kirby,et al. To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..
[13] W. Wyss. The fractional diffusion equation , 1986 .
[14] Santos B. Yuste,et al. On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .
[15] Nasser Hassan Sweilam,et al. CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .
[16] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[17] Kassem Mustapha,et al. Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.
[18] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[19] Bangti Jin,et al. ON TWO SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS , 2014 .
[20] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[21] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[22] Bangti Jin,et al. Two Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2014, 1404.3800.
[23] Kassem Mustapha,et al. A finite difference method for an anomalous sub-diffusion equation, theory and applications , 2012, Numerical Algorithms.
[24] William McLean,et al. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..
[25] William McLean,et al. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.
[26] Bernardo Cockburn,et al. Uniform-in-time superconvergence of HDG methods for the heat equation , 2012, Math. Comput..
[27] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[28] CHANG-MING CHEN,et al. Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..
[29] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[30] Ricardo H. Nochetto,et al. Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations , 1989 .
[31] Francisco-Javier Sayas,et al. A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .
[32] Fawang Liu,et al. Numerical simulation for the three-dimension fractional sub-diffusion equation☆ , 2014 .
[33] D. Schötzau,et al. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .
[34] Ke Shi,et al. Conditions for superconvergence of HDG methods for second-order elliptic problems , 2012, Math. Comput..
[35] Bernardo Cockburn,et al. Hybridizable Discontinuous Galerkin Methods , 2011 .
[36] Kassem Mustapha,et al. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .
[37] Eduardo Cuesta,et al. Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..
[38] CockburnBernardo,et al. A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2015 .
[39] Qinwu Xu,et al. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .
[40] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.