Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems

We study the hybridizable discontinuous Galerkin (HDG) method for the spatial discretization of time fractional diffusion models with Caputo derivative of order 0 < α < 1. For each time t ∈ [0, T], when the HDG approximations are taken to be piecewise polynomials of degree k ≥ 0 on the spatial domain Ω, the approximations to the exact solution u in the L∞(0, T; L2(Ω))-norm and to ∇u in the L∞(0,T;L2(Ω))$L_{\infty }(0, \textit {T}; \mathbf {L}_{2}({\Omega }))$-norm are proven to converge with the rate hk+1 provided that u is sufficiently regular, where h is the maximum diameter of the elements of the mesh. Moreover, for k ≥ 1, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for u converging with a rate hk+2 (ignoring the logarithmic factor), for quasi-uniform spatial meshes. Numerical experiments validating the theoretical results are displayed.

[1]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[2]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[3]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[4]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[5]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[6]  Zhoushun Zheng,et al.  Discontinuous Galerkin Method for Time Fractional Diffusion Equation , 2013 .

[7]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[8]  Kassem Mustapha,et al.  A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.

[9]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[10]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[11]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[12]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[13]  W. Wyss The fractional diffusion equation , 1986 .

[14]  Santos B. Yuste,et al.  On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .

[15]  Nasser Hassan Sweilam,et al.  CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .

[16]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[17]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[18]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[19]  Bangti Jin,et al.  ON TWO SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS , 2014 .

[20]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[21]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[22]  Bangti Jin,et al.  Two Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2014, 1404.3800.

[23]  Kassem Mustapha,et al.  A finite difference method for an anomalous sub-diffusion equation, theory and applications , 2012, Numerical Algorithms.

[24]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[25]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[26]  Bernardo Cockburn,et al.  Uniform-in-time superconvergence of HDG methods for the heat equation , 2012, Math. Comput..

[27]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[28]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[29]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[30]  Ricardo H. Nochetto,et al.  Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations , 1989 .

[31]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[32]  Fawang Liu,et al.  Numerical simulation for the three-dimension fractional sub-diffusion equation☆ , 2014 .

[33]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[34]  Ke Shi,et al.  Conditions for superconvergence of HDG methods for second-order elliptic problems , 2012, Math. Comput..

[35]  Bernardo Cockburn,et al.  Hybridizable Discontinuous Galerkin Methods , 2011 .

[36]  Kassem Mustapha,et al.  Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .

[37]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[38]  CockburnBernardo,et al.  A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2015 .

[39]  Qinwu Xu,et al.  Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .

[40]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.