A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices

In this paper, we present a noise, power, and area efficient biosensing front-end application specified integrated circuit (ASIC) for the next-generation wireless body sensor nodes and implantable devices. We identify the key design parameter tradeoffs in the biomedical recording systems and carry out a thorough analysis and optimization to maximize them. Based on our analysis and optimization of the front end, we propose a design methodology for the recording channel that is applicable to various biomedical applications. The ASIC is implemented in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process to validate our optimization methodology. The ASIC is reconfigurable to accommodate various biopotentials with the high-pass and low-pass cutoff frequencies being 0.5–300 Hz and 150 Hz–10 kHz, respectively. The low-pass cutoff is provided by an ultralow power <inline-formula> <tex-math notation="LaTeX">$G_{m}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${C}$ </tex-math></inline-formula> low-pass filter, which also acts as an antialiasing filter for the switching-optimized 10-b successive approximation register (SAR) analog-to-digital converter (ADC). The analog front end (AFE) gain is also programmable from 38 to 72 dB. A comprehensive power management unit provides the power supply, multiple reference voltages, and bias currents to the entire chip. The AFE and ADC dissipate only <inline-formula> <tex-math notation="LaTeX">$5.74~\mu \text{W}$ </tex-math></inline-formula> and 306 nW from the on-chip regulators, respectively. The measured input-referred noise is <inline-formula> <tex-math notation="LaTeX">$2.98~\mu \text{V}_{{\text {rms}}}$ </tex-math></inline-formula>, resulting in the noise efficiency factor and power efficiency factor equals 2.6 and 9.46, respectively. The active area of the AFE is 0.0228 mm<sup>2</sup>. We verify the chip functionality in a number of <italic>in vivo</italic> and <italic>ex vivo</italic> biological experiments.

[1]  Brian Litt,et al.  Drug discovery: A jump-start for electroceuticals , 2013, Nature.

[2]  Refet Firat Yazicioglu,et al.  An Implantable 455-Active-Electrode 52-Channel CMOS Neural Probe , 2014, IEEE Journal of Solid-State Circuits.

[3]  A. C. W. Wong,et al.  Sensium: an ultra-low-power wireless body sensor network platform: Design & application challenges , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Rahul Sarpeshkar,et al.  A Low-Power 32-Channel Digitally Programmable Neural Recording Integrated Circuit , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Robert Rieger,et al.  Programmable ExG Biopotential Front-End IC for Wearable Applications , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[6]  Pedram Mohseni,et al.  A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface , 2011, IEEE Journal of Solid-State Circuits.

[7]  Brian P. Otis,et al.  A 0.5 ${\rm cm}^{3}$ Four-Channel 1.1 mW Wireless Biosignal Interface With 20 m Range , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[8]  Yu-Wen Huang,et al.  21.3 A sub-mm3 wireless implantable intraocular pressure monitor microsystem , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[9]  Dong Han,et al.  A 0.45 V 100-Channel Neural-Recording IC With Sub-$\mu {\rm W}$/Channel Consumption in 0.18 $\mu{\rm m}$ CMOS , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[10]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[11]  Reid R. Harrison,et al.  The Design of Integrated Circuits to Observe Brain Activity , 2008, Proceedings of the IEEE.

[12]  Pedro P. Irazoqui,et al.  A 2-MHZ, process and voltage compensated clock oscillator for biomedical implantable SoC in 0.18-μm CMOS , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[13]  S. Narendra,et al.  Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[14]  K D Wise,et al.  An Ultra Compact Integrated Front End for Wireless Neural Recording Microsystems , 2010, Journal of Microelectromechanical Systems.

[15]  Yong Lian,et al.  An ECG-on-Chip With 535 nW/Channel Integrated Lossless Data Compressor for Wireless Sensors , 2014, IEEE Journal of Solid-State Circuits.

[16]  Refet Firat Yazicioglu,et al.  A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[17]  Jordi Parramon,et al.  A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection , 2011, IEEE Journal of Solid-State Circuits.

[18]  Yusuf Leblebici,et al.  Energy Efficient Low-Noise Neural Recording Amplifier With Enhanced Noise Efficiency Factor , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[19]  Young-Joon Kim,et al.  A $24\,\mu \text{W}$, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control , 2015, IEEE Journal of Solid-State Circuits.

[20]  E. Waterhouse,et al.  New horizons in ambulatory electroencephalography , 2003, IEEE Engineering in Medicine and Biology Magazine.

[21]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[22]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[23]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[24]  Hao Gao,et al.  A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS , 2016, IEEE J. Solid State Circuits.

[25]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[26]  Young-Joon Kim,et al.  An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  Patrick Chiang,et al.  0.56 V, –20 dBm RF-Powered, Multi-Node Wireless Body Area Network System-on-a-Chip With Harvesting-Efficiency Tracking Loop , 2014, IEEE Journal of Solid-State Circuits.

[28]  Jerald Yoo,et al.  A 1.83 µJ/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine , 2016, IEEE Trans. Biomed. Circuits Syst..

[29]  Yuji Tanabe,et al.  Wireless power transfer to deep-tissue microimplants , 2014, Proceedings of the National Academy of Sciences.

[30]  Clifford D. Ferris,et al.  Introduction to Bioinstrumentation , 1978 .

[31]  Refet Firat Yazicioglu,et al.  18.3 A multi-parameter signal-acquisition SoC for connected personal health applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[32]  Robert Rieger,et al.  Variable-Gain, Low-Noise Amplification for Sampling Front Ends , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Jan M. Rabaey,et al.  A 4.78 mm 2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation , 2015, IEEE Journal of Solid-State Circuits.

[34]  John G. Webster,et al.  Medical Instrumentation: Application and Design , 1997 .

[35]  Dong Han,et al.  A 0.45V 100-channel neural-recording IC with sub-µW/channel consumption in 0.18µm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[36]  A. Yli-Hankala,et al.  Changes in the T‐wave amplitude of ECG during isoflurane anaesthesia , 1993, Acta anaesthesiologica Scandinavica.

[37]  Timothy L. Routh,et al.  Function of an Implanted Tissue Glucose Sensor for More than 1 Year in Animals , 2010, Science Translational Medicine.

[38]  Eisse Mensink,et al.  A Low-Offset Double-Tail Latch-Type Voltage Sense Amplifier , 2007 .