Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins

The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry.

[1]  J. Post,et al.  Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). , 2003, Biochemical Society transactions.

[2]  Chang‐Deng Hu,et al.  Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis , 2003, Nature Biotechnology.

[3]  M. Zernicka-Goetz,et al.  Following cell fate in the living mouse embryo. , 1997, Development.

[4]  Gaudenz Danuser,et al.  FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.

[5]  Y. Liu,et al.  Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. , 2001, Biophysical journal.

[6]  P. Ahlquist,et al.  Detecting protein–protein interaction in live yeast by flow cytometry , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[7]  G. Patterson,et al.  Förster distances between green fluorescent protein pairs. , 2000, Analytical biochemistry.

[8]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[9]  Igor Stagljar,et al.  The split-ubiquitin membrane-based yeast two-hybrid system. , 2004, Methods in molecular biology.

[10]  D. Piston,et al.  Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. , 2003, Biophysical journal.

[11]  P. Verveer,et al.  Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. , 2004, Journal of structural biology.

[12]  P. Lipsky,et al.  Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser , 2003, Journal of microscopy.

[13]  T. Jovin,et al.  Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. , 1984, Biophysical journal.

[14]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[15]  Stephen J. Lockett,et al.  Intensity-based energy transfer measurements in digital imaging microscopy , 1998, European Biophysics Journal.

[16]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[17]  Th. Förster Energiewanderung und Fluoreszenz , 1946 .

[18]  T. Forster Energiewanderung und Fluoreszenz , 2004, Naturwissenschaften.

[19]  B. Herman,et al.  Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. , 1998, Biophysical journal.

[20]  John P. Miller,et al.  Using the yeast two-hybrid system to identify interacting proteins. , 2004, Methods in molecular biology.

[21]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[22]  T. Jovin,et al.  Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. , 1984, Cytometry.

[23]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[24]  P. Silver,et al.  Kinetics of spindle pole body separation in budding yeast. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S Falkow,et al.  Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. , 1997, Microbiology.

[26]  T M Jovin,et al.  Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. , 1996, The EMBO journal.

[27]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Richard N. Day,et al.  Fluorescent protein spectra. , 2001, Journal of cell science.

[29]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[30]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Pledger,et al.  Paradigms of Growth Control: Relation to Cdk Activation , 2002, Science's STKE.

[32]  L. Mátyus,et al.  Applications of fluorescence resonance energy transfer for mapping biological membranes. , 2002, Journal of biotechnology.

[33]  T. Zal,et al.  Photobleaching-corrected FRET efficiency imaging of live cells. , 2004, Biophysical journal.

[34]  P. Selvin Fluorescence resonance energy transfer. , 1995, Methods in enzymology.

[35]  L. Mátyus,et al.  Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. , 1998, Cytometry.