Quantitative phase imaging-based concepts for the analysis of global morphology changes in confluent cell layers

We have explored strategies for the analysis of confluent cell layers utilizing histogram based-evaluation of quantitative phase images for example of digital holographic microscopy (DHM), a variant of quantitative phase microscopy (QPM). The applicability of the proposed numerical procedures is illustrated by the DHM-based quantification of drug induced cell morphology changes. The achieved results show that histogram-based evaluation of quantitative phase images allows a highly reliable detection and continuous observation of global cellular morphology changes in confluent cell layers.

[1]  O. Haeberlé,et al.  High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. , 2009, Optics letters.

[2]  Patrik Langehanenberg,et al.  Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells , 2010, Thrombosis and Haemostasis.

[3]  Patrik Langehanenberg,et al.  Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. , 2010, Journal of biomedical optics.

[4]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[5]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[6]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[7]  B. Kemper,et al.  Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma , 2012, Strahlentherapie und Onkologie.

[8]  Jong Chul Ye,et al.  Self-reference quantitative phase microscopy for microfluidic devices. , 2010, Optics letters.

[9]  D. Dirksen,et al.  Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. , 2008, Applied optics.

[10]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[11]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[12]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[13]  Universitätsklinikum Münster,et al.  Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma , 2012 .

[14]  Christian Depeursinge,et al.  Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. , 2009, Journal of biomedical optics.

[15]  Huafeng Ding,et al.  Instantaneous Spatial Light Interference Microscopy. , 2010, Optics express.

[16]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[17]  Björn Kemper,et al.  Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy , 2016, SPIE BiOS.

[18]  Daniel Carl,et al.  Investigation of living pancreas tumor cells by digital holographic microscopy. , 2006, Journal of biomedical optics.

[19]  Daniel Carl,et al.  Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells , 2006, SPIE Photonics Europe.

[20]  Steffi Ketelhut,et al.  Quantitative Stain-Free and Continuous Multimodal Monitoring of Wound Healing In Vitro with Digital Holographic Microscopy , 2014, PloS one.

[21]  Steffi Ketelhut,et al.  Multimodal label-free in vitro toxicity testing with digital holographic microscopy , 2014, Photonics Europe.

[22]  Pinhas Girshovitz,et al.  Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization , 2012, Biomedical optics express.

[23]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[24]  C. Gorzelanny,et al.  Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells , 2015, Scientific Reports.

[25]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[26]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[27]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[28]  Steffi Ketelhut,et al.  Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers , 2017, PloS one.

[29]  Natan T Shaked,et al.  Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. , 2010, Journal of biomedical optics.

[30]  Steffi Ketelhut,et al.  New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy , 2016, SPIE BiOS.

[31]  Natan T Shaked,et al.  Dual-interference-channel quantitative-phase microscopy of live cell dynamics. , 2009, Optics letters.

[32]  Jérôme Parent,et al.  Label-free cytotoxicity screening assay by digital holographic microscopy. , 2013, Assay and drug development technologies.

[33]  Tomasz Kozacki,et al.  Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system. , 2009, Optics express.