Deciding the existence of a cherry-picking sequence is hard on two trees

Abstract Here we show that deciding whether two rooted binary phylogenetic trees on the same set of taxa permit a cherry-picking sequence, a special type of elimination order on the taxa, is NP-complete. This improves on an earlier result which proved hardness for eight or more trees. Via a known equivalence between cherry-picking sequences and temporal phylogenetic networks, our result proves that it is NP-complete to determine the existence of a temporal phylogenetic network that contains topological embeddings of both trees. The hardness result also greatly strengthens previous inapproximability results for the minimum temporal-hybridization number problem. This is the optimization version of the problem where we wish to construct a temporal phylogenetic network that topologically embeds two given rooted binary phylogenetic trees and that has a minimum number of indegree-2 nodes, which represent events such as hybridization and horizontal gene transfer. We end on a positive note, pointing out that fixed parameter tractability results in this area are likely to ensure the continued relevance of the temporal phylogenetic network model.

[1]  Norbert Zeh,et al.  Fixed-Parameter Algorithms for Maximum Agreement Forests , 2011, SIAM J. Comput..

[2]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Daniel H. Huson,et al.  Phylogenetic Networks - Concepts, Algorithms and Applications , 2011 .

[5]  Simone Linz,et al.  On the complexity of computing the temporal hybridization number for two phylogenies , 2013, Discret. Appl. Math..

[6]  Mike A. Steel,et al.  Phylogeny - discrete and random processes in evolution , 2016, CBMS-NSF regional conference series in applied mathematics.

[7]  R. Steele Optimization , 2005 .

[8]  M. Bordewich,et al.  Computing the Hybridization Number of Two Phylogenetic Trees Is Fixed-Parameter Tractable , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  Gabriel Cardona,et al.  Comparison of Tree-Child Phylogenetic Networks , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[10]  Janosch Döcker,et al.  On the existence of a cherry-picking sequence , 2018, Theor. Comput. Sci..

[11]  Leo van Iersel,et al.  Cycle Killer...Qu'est-ce que c'est? On the Comparative Approximability of Hybridization Number and Directed Feedback Vertex Set , 2011, SIAM J. Discret. Math..

[12]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[13]  Leo van Iersel,et al.  Locating a tree in a phylogenetic network , 2010, Inf. Process. Lett..

[14]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[15]  Charles Semple,et al.  Computing the Hybridization Number of Two Phylogenetic Trees Is Fixed-Parameter Tractable , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[16]  Simone Linz,et al.  Cherry Picking: A Characterization of the Temporal Hybridization Number for a Set of Phylogenies , 2013, Bulletin of Mathematical Biology.

[17]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[18]  Louxin Zhang On Tree-Based Phylogenetic Networks , 2016, J. Comput. Biol..

[19]  Jinling Huang,et al.  Horizontal gene transfer: building the web of life , 2015, Nature Reviews Genetics.

[20]  Steven Kelk,et al.  Networks: expanding evolutionary thinking. , 2013, Trends in genetics : TIG.

[21]  Mike A. Steel,et al.  Which Phylogenetic Networks are Merely Trees with Additional Arcs? , 2015, Systematic biology.

[22]  Tandy J. Warnow,et al.  Phylogenetic networks: modeling, reconstructibility, and accuracy , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Leo van Iersel,et al.  Kernelizations for the hybridization number problem on multiple nonbinary trees , 2013, J. Comput. Syst. Sci..

[24]  Gabriel Cardona,et al.  Path lengths in tree-child time consistent hybridization networks , 2008, Inf. Sci..

[25]  Gabriel Cardona,et al.  A distance metric for a class of tree-sibling phylogenetic networks , 2008, Bioinform..

[26]  Dan Gusfield,et al.  ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks , 2014 .

[27]  Zhi-Zhong Chen,et al.  HybridNET: a tool for constructing hybridization networks , 2010, Bioinform..